991 resultados para Eucalyptus wood


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-watering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los paneles sándwich de madera son un producto de creciente aplicación en la edificación de nuestro país. Este ascendente uso del material debe estar acompañado de las garantías necesarias avaladas por un estudio previo de sus prestaciones. Como es preceptivo y entre otros, se evalúa su durabilidad frente a las condiciones climatológicas, clave en los productos derivados de la madera, acorde a la normativa actual definida con tal fin, la Guía ETAG 016. Sin embargo, debido a la clase de uso del material, se ha detectado que dicha normativa tal y como está concebida no es capaz de valorar su envejecimiento adecuadamente. En este trabajo se proponen ensayos alternativos al establecido tras exhaustivos aná- lisis que recrean las condiciones reales de uso y más acordes a los productos de madera. Se concluye que la incorporación de una lámina impermeable, pero permeable al vapor de agua hacia el exterior, como las utilizadas en el montaje, aportan el mejor procedimiento de ensayo. Composite lightweight wood panels are being increasingly used in construction in Spain. Their growing use should be accompanied by necessary guarantees based on studies of their properties. As it is prescriptive and in addition to others tests, in the present work is examinated the durability of these panels when exposed to the climatic conditions, a characteristic of great importance for wood products, according to Guide ETAG 016, the current standard defining the ageing tests to be used. However, due to the use class of this material, there are indications that the testing outlined in this Guide is inappropriate for assessing the ageing of wood-based sandwich panels. Alternative tests are here proposed that recreate rather better the real conditions under which these products are used. Covering the samples in a waterproof sheeting permeable to the outward movement of water vapour, which is in fact used in the installation, provided the best procedure for testing these panels.