991 resultados para Estellene Walker


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unregulated apoptosis can be due to a disruption in the balance and control of both intra- and inter-cellular proteolytic activities leading to various disease states. Many proteases involved in apoptotic processes are yet to be identified; however, several are already well characterized. Caspases traditionally held the predominant role as prime mediators of execution. However, latterly, evidence has accumulated that non-caspases, including calpains, cathepsins, granzymes and the proteasome have roles in mediating and promoting cell death. Increasingly, research is implicating serine proteases within apoptotic processing, particularly in the generation of nuclear events such as condensation, fragmentation and DNA degradation observed in late-stage apoptosis. Serine proteases therefore are emerging as providing additional or alternative therapeutic targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that the method used to mix the liquid monomer and powder of PMMA bone cement influences the quality of the cement that is used in total joint replacements. Mixing theory indicates that the interaction between the liquid monomer and the powder is affected by a number of parameters, such as cement viscosity and degree of agitation, with this knowledge utilized in the design of cement mixing devices. Therefore, the objectives of this study were to: (i) obtain information on the interaction of the liquid monomer and the powder in the case of an PMMA bone cement, (ii) show how this knowledge can be applied to the design of an automated cement mixing device, and (iii) compare the porosity, bending modulus, and bending strength of one commercially-available cement prepared using the automated mixer and prepared using a conventional mixer that is in current clinical use. Experimental data indicated that increasing the velocity and decreasing the viscosity of the systems produced cement that improved mechanical properties, which may contribute to better mechanical integrity and, hence, reduced tendency for aseptic loosening, of cemented hip implants.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of this work were to investigate the conversion of a marine alga into hydroxyapatite (HA), and furthermore to design a composite bone tissue engineering scaffold comprising the synthesised HA within a porous bioresorbable polymer. The marine alga Phymatolithon calcareum, which exhibits a calcium carbonate honeycomb structure, with a natural architecture of interconnecting permeable pores (microporosity 4-11 mu m), provided the initial raw material for this study. The objective was to convert the alga into hydroxyapatite while maintaining its porous morphology using a sequential pyrolysis and chemical synthesis processes. Semi-quantitative XRD analysis of the post-hydrothermal material (pyrolised at 700-750 degrees C), indicated that the calcium phosphate (CaP) ceramic most likely consisted of a calcium carbonate macroporous lattice, with hydroxyapatite crystals on the surface of the macropores. Cell visibility (cytotoxicity) investigations of osteogenic cells were conducted on the CaP ceramic (i.e., the material post-hydrothermal analysis) which was found to be non-cytotoxic and displayed good biocompatibility when seeded with MG63 cells. Furthermore, a hot press scaffold fabrication technique was developed to produce a composite scaffold of CaP (derived from the marine alga) in a polycaprolactone (PCL) matrix. A salt leaching technique was further explored to introduce macroporosity to the structure (50-200 mu m). Analysis indicated that the scaffold contained both micro/macroporosity and mechanical strength, considered necessary for bone tissue engineering applications. (C) 2008 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enantiopure (1S, 2S)-cis-dihydrodiol metabolites 2B-5B have been obtained in low yield from the corresponding monosubstituted halobenzene substrates 2A-5A, using a wild-type strain of Pseudomonas putida (ML2) containing benzene dioxygenase (BDO). Benzene cis-dihydrodiol dehydrogenase (BCD) from P. putida ML2 and naphthalene cis-dihydrodiol dehydrogenase (NCD) from P. putida 8859 were purified and used in a comparative study of the stereoselective biotransformation of cis-dihydrodiol enantiomers 2B-5B. The BCD and NCD enzymes were found to accept cis-dihydrodiol enantiomers of monosubstituted benzene cis-dihydrodiol substrates 2B-5B of opposite absolute configuration. The acyclic alkene 1,2-diols 10-17 were also found to be acceptable substrates for BCD.