951 resultados para Error de identificación
Resumo:
The purpose of this study was (1) to determine frequency and type of medication errors (MEs), (2) to assess the number of MEs prevented by registered nurses, (3) to assess the consequences of ME for patients, and (4) to compare the number of MEs reported by a newly developed medication error self-reporting tool to the number reported by the traditional incident reporting system. We conducted a cross-sectional study on ME in the Cardiovascular Surgery Department of Bern University Hospital in Switzerland. Eligible registered nurses (n = 119) involving in the medication process were included. Data on ME were collected using an investigator-developed medication error self reporting tool (MESRT) that asked about the occurrence and characteristics of ME. Registered nurses were instructed to complete a MESRT at the end of each shift even if there was no ME. All MESRTs were completed anonymously. During the one-month study period, a total of 987 MESRTs were returned. Of the 987 completed MESRTs, 288 (29%) indicated that there had been an ME. Registered nurses reported preventing 49 (5%) MEs. Overall, eight (2.8%) MEs had patient consequences. The high response rate suggests that this new method may be a very effective approach to detect, report, and describe ME in hospitals.
Resumo:
While beneficially decreasing the necessary incision size, arthroscopic hip surgery increases the surgical complexity due to loss of joint visibility. To ease such difficulty, a computer-aided mechanical navigation system was developed to present the location of the surgical tool relative to the patient¿s hip joint. A preliminary study reduced the position error of the tracking linkage with limited static testing trials. In this study, a correction method, including a rotational correction factor and a length correction function, was developed through more in-depth static testing. The developed correction method was then applied to additional static and dynamic testing trials to evaluate its effectiveness. For static testing, the position error decreased from an average of 0.384 inches to 0.153 inches, with an error reduction of 60.5%. Three parameters utilized to quantify error reduction of dynamic testing did not show consistent results. The vertex coordinates achieved 29.4% of error reduction, yet with large variation in the upper vertex. The triangular area error was reduced by 5.37%, however inconsistent among all five dynamic trials. Error of vertex angles increased, indicating a shape torsion using the developed correction method. While the established correction method effectively and consistently reduced position error in static testing, it did not present consistent results in dynamic trials. More dynamic paramters should be explored to quantify error reduction of dynamic testing, and more in-depth dynamic testing methodology should be conducted to further improve the accuracy of the computer-aided nagivation system.
Resumo:
BACKGROUND: Physiological data obtained with the pulmonary artery catheter (PAC) are susceptible to errors in measurement and interpretation. Little attention has been paid to the relevance of errors in hemodynamic measurements performed in the intensive care unit (ICU). The aim of this study was to assess the errors related to the technical aspects (zeroing and reference level) and actual measurement (curve interpretation) of the pulmonary artery occlusion pressure (PAOP). METHODS: Forty-seven participants in a special ICU training program and 22 ICU nurses were tested without pre-announcement. All participants had previously been exposed to the clinical use of the method. The first task was to set up a pressure measurement system for PAC (zeroing and reference level) and the second to measure the PAOP. RESULTS: The median difference from the reference mid-axillary zero level was - 3 cm (-8 to + 9 cm) for physicians and -1 cm (-5 to + 1 cm) for nurses. The median difference from the reference PAOP was 0 mmHg (-3 to 5 mmHg) for physicians and 1 mmHg (-1 to 15 mmHg) for nurses. When PAOP values were adjusted for the differences from the reference transducer level, the median differences from the reference PAOP values were 2 mmHg (-6 to 9 mmHg) for physicians and 2 mmHg (-6 to 16 mmHg) for nurses. CONCLUSIONS: Measurement of the PAOP is susceptible to substantial error as a result of practical mistakes. Comparison of results between ICUs or practitioners is therefore not possible.