967 resultados para Enteric neurons
Resumo:
Background: The progression of heart failure in Chagas` disease has been explained by remodeling, leading to neurohumoral activation, or by the direct parasite damage to parasympathetic neurons during acute phase, leading to early sympathetic activation and progressive heart failure. To help distinguish between these hypotheses we studied muscle sympathetic nerve activity (MSNA) at rest and during handgrip exercise (30% of maximal voluntary contraction) in patients with Chagas` disease and normal ejection fraction vs. patients with heart failure. Methods: A consecutive study of 72 eligible out-patients/subjects was conducted between July 1998 and November 2004. The participants were classified in three advanced heart failure groups (New York Heart Association Functional Classes II-III): Chagas` disease (n-15), ischemic (n=15) and idiopathic cardiomyopathy (n-15). Twelve Chagas` disease patients without heart failure and normal ejection fraction, and 15 normal controls were also studied. MSNA was recorded directly from the peroneal nerve by microneurography technique. Results: MSNA was greater in heart failure patients when compared with Chagas` disease patients without heart failure (51 +/- 3 vs. 20 +/- 2 bursts/min P=0.0001). MSNA in Chagas` patients with normal ejection fraction and normal controls was not different. During exercise, MSNA was similar in all 3 heart failure groups. And, was lower in the Chagas` patients with normal ejection fraction than in patients with Chagas` disease and heart failure (28 +/- 1 vs. 63 +/- 5 bursts/min, respectively). Conclusion: MSNA is not elevated in patients with Chagas` disease with normal ejection fraction. These findings support the concept of remodeling and neurohumoral activation as a common pathway following significant cardiac injury. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A family of potent insecticidal toxins has recently been isolated from the venom of Australian funnel web spiders. Among these is the 37-residue peptide omega-atracotoxin-HV1 (omega-ACTX-HV1) from Hadronyche versuta. We have chemically synthesized and folded omega-ACTX-HV1, shown that it is neurotoxic, ascertained its disulphide bonding pattern, and determined its three-dimensional solution structure using NMR spectroscopy. The structure consists of a solvent-accessible beta-hairpin protruding from a disulphide-bonded globular core comprising four beta-turns. The three intramolecular disulphide bonds form a cystine knot motif similar to that seen in several other neurotoxic peptides. Despite limited sequence identity, omega-ACTX-HV1 displays significant structural homology with the omega-agatoxins and omega-conotoxins, both of which are vertebrate calcium channel antagonists; however, in contrast with these toxins, we show that omega-ACTX-HV1 inhibits insect, but not mammalian, voltage-gated calcium channel currents.
Resumo:
Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.
Resumo:
The open channel diameter of Escherichia coli recombinant large-conductance mechanosensitive ion channels (MscL) was estimated using the model of Hille (Hille, B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51:199-219)that relates the pore size to conductance. Based on the MscL conductance of 3.8 nS, and assumed pore lengths, a channel diameter of 34 to 46 Angstrom was calculated. To estimate the pore size experimentally, the effect of large organic ions on the conductance of MscL was examined. Poly-L-lysines (PLLs) with a diameter of 37 Angstrom or larger significantly reduced channel conductance, whereas spermine (similar to 15 Angstrom), PLL19 (similar to 25 Angstrom) and 1,1'-bis-(3-(1'-methyl-(4,4'-bipyridinium)-1-yl)-propyl)-4,4'-bipyridinium (similar to 30 Angstrom) had no effect. The smaller organic ions putrescine, cadaverine, spermine, and succinate all permeated the channel. We conclude that the open pore diameter of the MscL is similar to 40 Angstrom, indicating that the MscL has one of the largest channel pores yet described. This channel diameter is consistent with the proposed homohexameric model of the MscL.
Resumo:
SUBPOPULATIONS of olfactory receptor neurons, which are dispersed throughout the olfactory neuroepithelium, express specific cell surface carbohydrates and project to discrete regions of the olfactory bulb. Cell surface carbohydrates such as N-acetyl-lactosamine have been postulated to mediate sorting and selective fasciculation of discrete axon subpopulations during development of the olfactory pathway. Substrate-bound N-acetyl-lactosamine promotes neurite outgrowth by both clonal olfactory receptor neuron cell lines and olfactory receptor neurons in vitro, indicating that cell surface carbohydrates may be ligands for receptor-mediated stimulation of axon growth in vivo. In the present study, the role of transmembrane signaling in N-acetyl-lactosamine-stimulated neurite outgrowth was examined in the clonal olfactory neuron cell line 4.4.2. Substrate-bound N-acetyl-lactosamine stimulated neurite outgrowth which was specifically inhibited by antagonists to N- and L-type calcium channels and to tyrosine kinase phosphorylation. These results indicate that N-acetyl-lactosamine can evoke transmembrane receptor-mediated responses capable of influencing neurite outgrowth.
Resumo:
The hallmark of Alzheimer's disease is the cerebral deposition of amyloid which is derived from the amyloid precursor protein (APP). The function of APP is unknown but there is increasing evidence for the role of APP in cell-cell and/or cell-matrix interactions. Primary cultures of murine neurons were treated with antisense oligonucleotides to down-regulate APP. This paper presents evidence that APP mediates a substrate-specific interaction between neurons and extracellular matrix components collagen type I, laminin and heparan sulphate proteoglycan but not fibronectin or poly-L-lysine. It remains to be determined whether this effect is the direct result of APP-matrix interactions, or whether an intermediary pathway is involved. (C) 1997 Elsevier Science B.V.
Resumo:
It is known that physical activity triggers changes in the central nervous system Adult rats, trained on treadmills for 4 weeks, and a group of sedentary rats was submitted to contuse moderate spinal cord injury A group of sedentary rats was submitted to a sham operation The trained group continued running on treadmill after lesion for 4 weeks Motor behavior evaluated by BBB score was smaller in the sedentary group compared to the trained rats by 7 days after lesion Computerized activity monitor showed clear-cut differences in spontaneous motor parameters in trained rats only before lesion After surgery, sedentary rats showed changes in motor parameters but not in later periods of analysis Animals were euthanized by 28 days after surgery, and their spinal cords were processed for Nissl staining and immunohistochemistry The number of the remaining neurons and the lesion areal and lesion volume fractions were obtained by stereological method The number of the remaining neurons did not change after training Lesion volume and lesion areal fraction per section were smaller in the trained group Lesion index was more pronounced in the sedentary group Microdensitometric image analysis demonstrated a microglial reaction, astroglial activation, and glial FGF-2 production more pronounced in the spinal cord of sedentary animals GAP-43 was higher in caudal levels of contusion in the sedentary group In conclusion, treadmill running may favor a better functional recovery in the acute period after spinal cord lesion and wound repair processes leading to neuroprotection (C) 2010 Elsevier B V All rights reserved
Resumo:
The ability of mesenchymal stem cells to generate functional neurons in culture is still a matter of controversy. In order to assess this issue, we performed a functional comparison between neuronal differentiation of human MSCs and fetal-derived neural stem cells (NSCs) based on morphological, immunocytochemical, and electrophysiological criteria. Furthermore, possible biochemical mechanisms involved in this process were presented. NF200 immunostaining was used to quantify the yield of differentiated cells after exposure to CAMP. The addition of a PKA inhibitor and Ca(2+) blockers to the differentiation medium significantly reduced the yield of differentiated cells. Activation of CREB was also observed on MSCs during maturation. Na(+)-, K(+)-, and Ca(2+)-voltage-dependent currents were recorded from MSCs-derived cells. In contrast, significantly larger Na(+) currents, firing activity, and spontaneous synaptic currents were recorded from NSCs. Our results indicate that the initial neuronal differentiation of MSCs is induced by CAMP and seems to be dependent upon Ca(2+) and the PKA pathway. However, compared to fetal neural stem cells, adult mesenchymal counterparts are limited in their neurogenic potential. Despite the similar yield of neuronal cells, NSCs achieved a more mature functional state. Description of the underlying mechanisms that govern MSCs` differentiation toward a stable neuronal phenotype and their limitations provides a unique opportunity to enhance our understanding of stem cell plasticity. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper analyzes the astroglial and neuronal responses in subtelencephalic structures, following a bilateral ablation of the telencephalon in the Columba livia pigeons. Control birds received a sham operation. Four months later the birds were sacrificed and their brains processed for glial fribillary acid protein (GFAP) and neurofilament immunohistochemistry, markers for astrocytes and neurons, respectively. Computer-assisted image analysis was employed for quantification of the immunoreactive labeling in the nucleus rotundus (N.Rt) and the optic tectum (OT) of the birds. An increased number of GFAP immunoreactive astrocytes were found in several subregions of the N.Rt (p .001), as well as in layers 1, 2cd, 3, and 6 of the OT (p .001) of the lesioned animals. Neurofilament immunoreactivity decreased massively in the entire N.Rt of the lesioned birds; however, remaining neurons with healthy aspect showing large cytoplasm and ramified branches were detected mainly in the periphery of the nucleus. In view of the recently described paracrine neurotrophic properties of the activated astrocytes, the data of the present study may suggest a long-lasting neuroglial interaction in regions of the lesioned bird brain far from injury. Such events may trigger neuronal plasticity in remaining brain structures that may lead spontaneous behavior recovery as the one promoted here even after a massive injury.
Resumo:
We have observed in previous studies that 6-hydroxydopamine (6-OHDA)-induced lesions in the nigrostriatal dopamine (DA) system promote increases of the astroglial basic fibroblast growth factor (FGF-2, bFGF) synthesis in the ascending DA pathways, event that could be modified by adrenosteroid hormones. Here, we first evaluated the changes of microglial reactivity in relation to the FGF-2-mediated trophic responses in the lesioned nigrostriatal DA system. 6-OHDA was injected into the left side of the rat substantia nigra. The OX42 immunohistochemistry combined with stereology showed the time course of the microglial activation. The OX42 immunoreactivity (IR) was already increased in the pars compacta of the substantia nigra (SNc) and ventral tegmental area (VTA) 2 h after the 6-OHDA injection, peaked on day 7, and remained increased on the 14th day time-interval. In the neostriatum, OX42 immunoreactive (ir) microglial profiles increased at 24 h, peaked at 72 h, was still increased at 7 days but not 14 days after the 6-OHDA injection. Two-colour immunofluorescence analysis of the tyrosine hydroxylase (TH) and OX42 IRs revealed the presence of small patches of TH IR within the activated microglia. A decreased FGF-2 IR was seen in the cytoplasm of DA neurons of the SNc and VTA as soon as 2 h after 6-OHDA injection. The majority of the DA FGF-2 ir cells of these regions had disappeared 72 h after neurotoxin. The astroglial FGF-2 IR increased in the SNc and VTA, which peaked on day 7. Two-colour immunofluorescence and immunoperoxidase analyses of the FGF-2 and OX42 IRs revealed no FGF-2 IR within the reactive or resting microglia. Second, we have evaluated in a series of biochemical experiments whether adrenocortical manipulation can interfere with the nigral lesion and the state of local astroglial reaction, looking at the TH and GFAP levels respectively. Rats were adrenalectomized (ADX) and received a nigral 6-OHDA stereotaxical injection 2 days later and sacrificed up to 3 weeks after the DA lesion. Western blot analysis showed time-dependent decrease and elevation of TH and GFAP levels, respectively, in the lesioned versus contralateral midbrain sides, events potentiated by ADX and worsened by corticosterone replacement. ADX decreased the levels of FGF-2 protein (23 kDa isoform) in the lesioned side of the ventral midbrain compared contralaterally. The results indicate that reactive astroglia, but not reactive microglia, showed an increased FGF-2 IR in the process of DA cell degeneration induced by 6-OHDA. However, interactions between these glial cells may be relevant to the mechanisms which trigger the increased astroglial FGF-2 synthesis and thus may be related to the trophic state of DA neurons and the repair processes following DA lesion. The findings also gave further evidence that adrenocortical hormones may regulate astroglial-mediated trophic mechanisms and wound repair events in the lesioned DA system that may be relevant to the progression of Parkinson`s disease.
Resumo:
Glutamatergic transmission through metabotropic and ionotropic receptors, including kainate receptors, plays an important role in the nucleus of the solitary tract (NTS) functions. Glutamate system may interact with several other neurotransmitter systems which might also be influenced by steroid hormones. In the present study we analyzed the ability of systemic kainate to stimulate rat NTS neurons, which was evaluated by c-Fos as a marker of neuronal activation, and also to change the levels of NTS neurotransmitters such as GABA, NPY, CGRP, GAL, NT and NO by means of quantitative immunohistichemistry combined with image analysis. The analysis was also performed in adrenalectomized and kainate stimulated rats in order to evaluate a possible role of adrenal hormones on NTS neurotransmission. Male Wistar rats (3 month-old) were used in the present study. A group of 15 rats was submitted either to bilateral adrenalectomy or sham operation. Forty-eight hours after the surgeries, adrenalectomized rats received a single intraperitoneal injection of kainate (12 mg/kg) and the sham-operated rats were injected either with saline or kainate and sacrificed 8 hours later. The same experimental design was applied in a group of rats in order to register the arterial blood pressure. Systemic kainate decreased the basal values of mean arterial blood pressure (35%) and heart rate (22%) of sham-operated rats, reduction that were maintained in adrenalectomized rats. Kainate triggered a marked elevation of c-Fos positive neurons in the NTS which was 54% counteracted by adrenalectomy. The kainate activated NTS showed changes in the immunoreactive levels of GABA (143% of elevation) and NPY (36% of decrease), which were not modified by previous ablation of adrenal glands. Modulation in the levels of CGRP, GAL and NT immunoreactivities were only observed after kainate in the adrenalectomized rats. Treatments did not alter NOS labeling. It is possible that modulatory function among neurotransmitter systems in the NTS might be influenced by steroid hormones and the implications for central regulation of blood pressure or other visceral regulatory mechanisms control should be further investigated.
Resumo:
The present study investigated the effects of bilateral adrenalectomy (ADX) on the synthesis of basic fibroblast growth factor (bFGF, FGF-2) mRNA and on the expression of its FGF receptor subtype-2 (FGFR2) mRNA after a 6-hydroxydopamine (6-OHDA)-induced lesion of nigrostriatal dopamine system. In previous papers we have demonstrated that corticosterone increases FGF-2 immunoreactivity mainly in the astrocytes of the substantia nigra [Chadi, G., Rosen, L., Cintra, A., Tinner, B., Zoli, M., Pettersson, R.F., Fuxe, K., 1993b. Corticosterone increases FGF-2 (bFGF) immunoreactivity in the substantia nigra of the rat. Neuroreport 4, 783-786.] and that 6-OHDA injected in the ventral midbrain upregulates FGF-2 synthesis in reactive astrocytes in the ascending dopamine pathways [Chadi, G., Cao, Y., Pettersson, R.F., Fuxe, K., 1994. Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Neuroscience 61, 891-910.]. Rats were adrenalectomized and received a 6-OHDA stereotaxical injection in the ventral midbrain 2 days later. Seven days after the dopamine lesion, Western blot analysis showed a decreased level of tyrosine hydroxylase in the lesioned side of the midbrain, an event that was not altered by ADX or corticosterone replacement. Moreover, the degeneration of nigral dopamine neurons, which was confirmed by the disappearance of acidic FGF (FGF-1) mRNA and the decrement of tyrosine hydroxylase mRNA labeled nigral neurons, was not altered by ADX. The FGF-2 protein (23 kDa isoform but not 21 kDa fraction) levels increased in the lesioned side of the ventral midbrain. This elevation was counteracted by ADX, an effect that was fully reversed by corticosterone replacement. In situ hybridization revealed that ADX counteracted the elevated FGF-2 mRNA levels in putative glial cells of the ipsilateral pars compacta of the substantia nigra and in the ventral tegmental area. The ADX also counteracted the increased density and intensity of the astroglial FGF-2 immunoreactive profiles within the lesioned pars compacta of the substantia nigra and the ventral tegmental area as determined by stereology. The stereotaxical mechanical needle insertion triggered the expression of FGFR2 mRNA in putative glial cells, spreading to the entire ipsilateral ventral midbrain from the region of needle track, an occurrence that was partially reversed by ADX. In conclusion, bilateral ADX counteracted the increased astroglial FGF-2 synthesis in the dopamine regions of the ventral midbrain following a 6-OHDA-induced local lesion and interfered with FGF receptor regulation around injury. These findings give further evidence that adrenocortical hormones may regulate the astroglial FGF-2-mediated trophic mechanisms and wound repair events in the lesioned central nervous system. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The human endometrium is a dynamic tissue that undergoes cycles of growth and regression with each menstrual cycle. Adult progenitor stem cells are likely responsible for this remarkable regenerative capacity; these same progenitor stem cells may also have an enhanced capacity to generate endometriosis if shed in a retrograde fashion. The progenitor stem cells reside in the uterus; however, less-committed mesenchymal stem cells may also travel from other tissues such as bone marrow to repopulate the progenitor population. Mesenchymal stem cells are also involved in the pathogenesis of endometriosis and may be the principle source of endometriosis outside of the peritoneal cavity when they differentiate into endometriosis in ectopic locations. Finally, besides progenitor stem cells, recent publications have identified multipotent stem cells in the endometrium. These multipotent stem cells are a readily available source of cells that are useful in tissue engineering and regenerative medicine. Endometrial stem cells have been used to generate chondrocytes, myocytes, neurons, and adiposites in vitro as well as to replace dopaminergic neurons in a murine model of Parkinson`s disease.
Resumo:
Study Design: Data mining of single nucleotide polymorphisms (SNPs) in gene pathways related to spinal cord injury (SCI). Objectives: To identify gene polymorphisms putatively implicated with neuronal damage evolution pathways, potentially useful to SCI study. Setting: Departments of Psychiatry and Orthopedics, Faculdade de Medicina, Universidade de Sao Paulo, Brazil. Methods: Genes involved with processes related to SCI, such as apoptosis, inflammatory response, axonogenesis, peripheral nervous system development and axon ensheathment, were determined by evaluating the `Biological Process` annotation of Gene Ontology (GO). Each gene of these pathways was mapped using MapViewer, and gene coordinates were used to identify their polymorphisms in the SNP database. As a proof of concept, the frequency of subset of SNPs, located in four genes (ALOX12, APOE, BDNF and NINJ1) was evaluated in the DNA of a group of 28 SCI patients and 38 individuals with no SC lesions. Results: We could identify a total of 95 276 SNPs in a set of 588 genes associated with the selected GO terms, including 3912 nucleotide alterations located in coding regions of genes. The five non-synonymous SNPs genotyped in our small group of patients, showed a significant frequency, reinforcing their potential use for the investigation of SCI evolution. Conclusion: Despite the importance of SNPs in many aspects of gene expression and protein activity, these gene alterations have not been explored in SCI research. Here we describe a set of potentially useful SNPs, some of which could underlie the genetic mechanisms involved in the post trauma spinal cord damage.
Resumo:
Structural magnetic resonance imaging and postmortem studies showed volume loss in the hippocampus in schizophrenia. The noted tissue reduction in the posterior section suggests that some cellular subfractions within this structure might be reduced in schizophrenia. To address this, we investigated numbers and densities of neurons, oligodendrocytes and astrocytes in the posterior hippocampal subregions in postmortem brains from ten patients with schizophrenia and ten matched controls using design-based stereology performed on Nissl-stained sections. Compared to the controls, the patients with schizophrenia showed a significant decrease in the mean number of oligodendrocytes in the left and right CA4. This is the first finding of reduced numbers of oligodendrocytes in CA4 of the posterior part of the hippocampus in schizophrenia. Our results are in line with earlier findings in the literature concerning decreased numbers of oligodendrocytes in the prefrontal cortex in schizophrenia. Our results may indicate disturbed connectivity of the CA4 of the posterior part of the hippocampus in schizophrenia and, thus, contribute to the growing number of studies showing the involvement of posterior hippocampal pathology in the pathophysiology of schizophrenia.