952 resultados para Engineering, Biomedical|Engineering, Mechanical


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Web is a powerful hypermedia-based information retrieval mechanism that provides a user-friendly access across all major computer platforms connected over Internet. This paper demonstrates the application of Web technology when used as an educational delivery tool. It also reports on the development of a prototype electronic publishing project where Web technology was used to deliver power engineering educational resources. The resulting hyperbook will contain diverse teaching resources such as hypermedia-based modular educational units and computer simulation programs that are linked in a meaningful and structured way. The use of Web for disseminating information of this nature has many advantages that cannot possibly be achieved otherwise. PREAMBLE The continual increase of low-cost functionality available in desktop computing has opened up a new possibility in learning within a wider educational framework. This technology also is supported by enhanced features offered by new and ...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Probabilistic robot mapping techniques can produce high resolution, accurate maps of large indoor and outdoor environments. However, much less progress has been made towards robots using these maps to perform useful functions such as efficient navigation. This paper describes a pragmatic approach to mapping system development that considers not only the map but also the navigation functionality that the map must provide. We pursue this approach within a bio-inspired mapping context, and use esults from robot experiments in indoor and outdoor environments to demonstrate its validity. The research attempts to stimulate new research directions in the field of robot mapping with a proposal for a new approach that has the potential to lead to more complete mapping and navigation systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose – This paper aims to present a novel rapid prototyping (RP) fabrication methods and preliminary characterization for chitosan scaffolds. Design – A desktop rapid prototyping robot dispensing (RPBOD) system has been developed to fabricate scaffolds for tissue engineering (TE) applications. The system is a computer-controlled four-axis machine with a multiple-dispenser head. Neutralization of the acetic acid by the sodium hydroxide results in a precipitate to form a gel-like chitosan strand. The scaffold properties were characterized by scanning electron microscopy, porosity calculation and compression test. An example of fabrication of a freeform hydrogel scaffold is demonstrated. The required geometric data for the freeform scaffold were obtained from CT-scan images and the dispensing path control data were converted form its volume model. The applications of the scaffolds are discussed based on its potential for TE. Findings – It is shown that the RPBOD system can be interfaced with imaging techniques and computational modeling to produce scaffolds which can be customized in overall size and shape allowing tissue-engineered grafts to be tailored to specific applications or even for individual patients. Research limitations/implications – Important challenges for further research are the incorporation of growth factors, as well as cell seeding into the 3D dispensing plotting materials. Improvements regarding the mechanical properties of the scaffolds are also necessary. Originality/value – One of the important aspects of TE is the design scaffolds. For customized TE, it is essential to be able to fabricate 3D scaffolds of various geometric shapes, in order to repair tissue defects. RP or solid free-form fabrication techniques hold great promise for designing 3D customized scaffolds; yet traditional cell-seeding techniques may not provide enough cell mass for larger constructs. This paper presents a novel attempt to fabricate 3D scaffolds, using hydrogels which in the future can be combined with cells.