989 resultados para Energy Cycling
Resumo:
PURPOSE: Slight physiological differences between acute exposure in normobaric hypoxia (NH) and hypobaric hypoxia (HH) have been reported. Taken together, these differences suggest different physiological responses to hypoxic exposure to a simulated altitude (NH) versus a terrestrial altitude (HH). For this purpose, in the present study, we aimed to directly compare the time-trial performance after acute hypoxia exposure (26 h, 3450 min) by the same subjects under three different conditions: NH, HH, and normobaric normoxia (NN). Based on all of the preceding studies examining the differences among these hypoxic conditions, we hypothesized greater performance impairment in HH than in NH. METHODS: The experimental design consisted of three sessions: NN (Sion: FiO2, 20.93), NH (Sion, hypoxic room: FiO2, 13.6%; barometric pressure, 716 mm Hg), and HH (Jungfraujoch: FiO2, 20.93; barometric pressure, 481 mm Hg). The performance was evaluated at the end of each session with a cycle time trial of 250 kJ. RESULTS: The mean time trial duration in NN was significantly shorter than under the two hypoxic conditions (P < 0.001). In addition, the mean duration in NH was significantly shorter than that in HH (P < 0.01). The mean pulse oxygen saturation during the time trial was significantly lower for HH than for NH (P < 0.05), and it was significantly higher in NN than for the two other sessions (P < 0.001). CONCLUSION: As previously suggested, HH seems to be a more stressful stimulus, and NH and HH should not be used interchangeability when endurance performance is the main objective. The principal factor in this performance difference between hypoxic conditions seemed to be the lower peripheral oxygen saturation in HH at rest, as well as during exercise.
Resumo:
The conversion of solar energy into more useful forms of energy, such as chemical fuels or electricity, is one of the central problems facing modern science. Progress in photochemistry and chemical synthesis has led to a point where light energy conversion by means of artificial molecular devices can be rationally attempted. In this article, a general approach towards this challenging goal is presented.
Resumo:
Joc manager de ciclisme on l'usuari es podrà convertir en president, director esportiu i entrenador d'un equip professional de ciclisme durant les 3 grans rondes del ciclisme en ruta.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
The main purpose of this thesis is to measure and evaluate how accurately the current energy saving calculation in ABB’s new variable speed drive ACS850 works. The main topic of this thesis is energy-efficiency parameters. At the beginning of this thesis centrifugal pump, squirrel cage motor and variable speed drive, including some equations related to them, are being introduced. Also methods of throttling control and variable speed drive control of centrifugal pumps are being introduced. These subjects are introduced because the energy saving calculation in ACS850 is related to the centrifugal pumps usually driven by squirrel cage motors. The theory also includes short section about specific energy of pumping. Before measurements the current energy saving calculation of ACS850 is being introduced and analyzed. The measurements part includes introduction of measuring equipment, measurement results, summary and analysis of the measurements. At the end of this thesis a proposal for an improvement to the current energy saving calculation is being introduced and few proposals are made for new energy-efficiency parameters, which could be added to variable speed drives. At the end are also thoughts
Resumo:
Traditionally, fossil fuels have always been the major sources of the modern energy production. However prices on these energy sources have been constantly increasing. The utilization of local biomass resources for energy production can substitute significant part of the required energy demand in different energy sectors. The introduction of the biomass usage can easily be started in the forest industry first as it possesses biomass in a large volume. The forest industry energy sector has the highest potential for the fast bioenergy development in the North-West Russia. Therefore, the question concerning rational and effective forest resources use is important today as well as the utilization of the forestry by-products. This work describes and analyzes the opportunities of utilising biomass, mainly, in the form of the wood by-products, for energy production processes in general, as well as for the northwest Russian forest industry conditions. The study also covers basic forest industry processes and technologies, so, the reader can get familiar with the information about the specific character of the biomass utilization. The work gives a comprehensive view on the northwest forest industry situation from the biomass utilisation point of view. By presenting existing large-scale sawmills and pulp and paper mills the work provides information for the evaluation of the future development of CHP investments in the northwest Russian forest industry.
Resumo:
Fluorescence resonance energy transfer (FRET) is a non-radiative energy transfer from a fluorescent donor molecule to an appropriate acceptor molecule and a commonly used technique to develop homogeneous assays. If the emission spectrum of the donor overlaps with the excitation spectrum of the acceptor, FRET might occur. As a consequence, the emission of the donor is decreased and the emission of the acceptor (if fluorescent) increased. Furthermore, the distance between the donor and the acceptor needs to be short enough, commonly 10-100 Å. Typically, the close proximity between the donor and the acceptor is achieved via bioaffinity interactions e.g. antibody binding antigen. Large variety of donors and acceptors exist. The selection of the donor/acceptor pair should be done not only based on the requirements of FRET but also the performance expectancies and the objectives of the application should be considered. In this study, the exceptional fluorescence properties of the lanthanide chelates were employed to develop two novel homogeneous immunoassays: a non-competitive hapten (estradiol) assay based on a single binder and a dual-parametric total and free PSA assay. In addition, the quenching efficiencies and energy transfer properties of various donor/acceptor pairs were studied. The applied donors were either europium(III) or terbium(III) chelates; whereas several organic dyes (both fluorescent and quenchers) acted as acceptors. First, it was shown that if the interaction between the donor/acceptor complexes is of high quality (e.g. biotin-streptavidin) the fluorescence of the europium(III) chelate could be quenched rather efficiently. Furthermore, the quenching based homogeneous non-competitive assay for estradiol had significantly better sensitivity (~67 times) than a corresponding homogeneous competitive assay using the same assay components. Second, if the acceptors were chosen to emit at the emission minima of the terbium(III) chelate, several acceptor emissions could be measured simultaneously without significant cross-talk from other acceptors. Based on these results, the appropriate acceptors were chosen for the dual-parameter assay. The developed homogeneous dual-parameter assay was able to measure both total and free PSA simultaneously using a simple mix and measure protocol. Correlation of this assay to a heterogeneous single parameter assay was excellent (above 0.99 for both) when spiked human plasma samples were used. However, due to the interference of the sample material, the obtained concentrations were slightly lower with the homogeneous than the heterogeneous assay, especially for the free PSA. To conclude, in this work two novel immunoassay principles were developed, which both are adaptable to other analytes. However, the hapten assay requires a rather good antibody with low dissociation rate and high affinity; whereas the dual-parameter assay principle is applicable whenever two immunometric complexes can form simultaneously, provided that the requirements of FRET are fulfilled.
Resumo:
This Master's thesis deals with a Micro Scale Wind Wind Turbine application. The thesis consists of nine chapters. The first chapter is an introduction to the philosophy of a small scale wind turbine application. The second defines concepts, and lists the requirements. The third presents the whole application for an On-Grid , and for an Off-Grid arrangement, with main concentration on lighting, heating, and energy storage. The fourth deals with the Inverter's technology, which are used for the conversion of the produced power. The fifth chapter presents the available storage technology and it's possibilities. The sixth deals with the system, and the technological means used for the implementation. The seventh presents the PLC device, which was used as the controller for the management of the whole application. The eighth deals with the concept and the control application philosophy that the PLC involves. And the final chapter presents conclusions and ideas for further considerations.
Resumo:
The goal of the master's thesis is a detailed research of the technical wind energy potential in Russian Federation: the distribution of the potential all over the territory of the country and the possibility of the application of the potential for power supply of various objects. The main attention of the thesis is devoted to the assessment of wind energy resources (potential) of Russian Federation, both for the territory of country in whole and for every region. Theoretical basic wind energy concepts and the scheme of transformation of kinetic energy of a wind into electric energy by modern wind turbines are given in the work. Also the costs of energy, stimuli of development of wind-engineering and obstacles which impact the industry development are analyzed. The review of existent and projected wind power plants in Russia is carried out.
Resumo:
The strategic group theory provides an intermediate level of analysis between a single company and the whole industry for identifying issues about the company's competitive position and strategic choices. Strategic groups are companies within an industry with similar strategic characteristics or competing on similar bases. Strategic choices are aligned with the firms’ resources. The purpose of this study was to identify the strategic groups in the wind energy industry in Europe, and study, whether a certain group membership results in financial performance differences. Altogether 80 European wind energy companies were included in the study, which were clustered into four strategic groups according to their age and growth rate. Each group corresponds to a different strategy. The results show that the wind energy companies can be clustered according to the chosen strategic characteristics. Strategic decisions were investigated with characteristic variables. Performance variables were used in the analysis measuring profitability, liquidity and solvency of the groups. These strategic choices of the companies did not have a significant influence on the firms’ performance. The more mature and slower growing group proved to be the most successful. However, the differences between groups were generally not statistically significant. The only statistically significant difference found was in the solvency ratio between Mature Slow and Young Rapid groups. Measured with these variables, more mature and slower growing companies performed better. Therefore, a certain strategic group membership results in performance differences.
Resumo:
As a result of climate change, streams are warming and their runoff has been decreasing in most temperate areas. These changes can affect consumers directly by increasing their metabolic rates and modifying their physiology and indirectly by changing the quality of the resources on which organisms depend. In this study, a common stream detritivore (Echinogammarus berilloni Catta) was reared at two temperatures (15 and 20°C) and fed Populus nigra L. leaves that had been conditioned either in an intermittent or permanent reach to evaluate the effects of resource quality and increased temperatures on detritivore performance, stoichiometry and nutrient cycling. The lower quality (i.e., lower protein, soluble carbohydrates and higher C:P and N:P ratios) of leaves conditioned in pools resulted in compensatory feeding and lower nutrient retention capacity by E. berilloni. This effect was especially marked for phosphorus, which was unexpected based on predictions of ecological stoichiometry. When individuals were fed pool-conditioned leaves at warmer temperatures, their growth rates were higher, but consumers exhibited less efficient assimilation and higher mortality. Furthermore, the shifts to lower C:P ratios and higher lipid concentrations in shredder body tissues suggest that structural molecules such as phospholipids are preserved over other energetic C-rich macromolecules such as carbohydrates. These effects on consumer physiology and metabolism were further translated into feces and excreta nutrient ratios. Overall, our results show that the effects of reduced leaf quality on detritivore nutrient retention were more severe at higher temperatures because the shredders were not able to offset their increased metabolism with increased consumption or more efficient digestion when fed pool-conditioned leaves. Consequently, the synergistic effects of impaired food quality and increased temperatures might not only affect the physiology and survival of detritivores but also extend to other trophic compartments through detritivore-mediated nutrient cycling.
Resumo:
We investigate the shot noise of nonequilibrium carriers injected into a ballistic conductor and interacting via long-range Coulomb forces. Coulomb interactions are shown to act as an energy analyzer of the profile of injected electrons by means of the fluctuations of the potential barrier at the emitter contact. We show that the details in the energy profile can be extracted from shot-noise measurements in the Coulomb interaction regime, but cannot be obtained from time-averaged quantities or shot-noise measurements in the absence of interactions.
Resumo:
This paper examines the extent to which innovative Spanish firms pursue improvements in energy efficiency (EE) as an objective of innovation. The increase in energy consumption and its impact on greenhouse gas emissions justifies the greater attention being paid to energy efficiency and especially to industrial EE. The ability of manufacturing companies to innovate and improve their EE has a substantial influence on attaining objectives regarding climate change mitigation. Despite the effort to design more efficient energy policies, the EE determinants in manufacturing firms have been little studied in the empirical literature. From an exhaustive sample of Spanish manufacturing firms and using a logit model, we examine the energy efficiency determinants for those firms that have innovated. To carry out the econometric analysis, we use panel data from the Community Innovation Survey for the period 2008‐2011. Our empirical results underline the role of size among the characteristics of firms that facilitate energy efficiency innovation. Regarding company behaviour, firms that consider the reduction of environmental impacts to be an important objective of innovation and that have introduced organisational innovations are more likely to innovate with the objective of increasing energy efficiency. Keywords: energy efficiency, corporate targets, innovation, Community Innovation Survey. JEL Classification: Q40, Q55, O31