952 resultados para Electronic structure and electrical properties of surfaces
Resumo:
LaMn and LaCo doped barium hexaferrites of formula Ba(1-x)LaxFe(12-x)MxO19 (M=Mn, Co) (x=0.05 to 0.40) were prepared with an improved co-precipitation/molten salt method. For the synthesis, aqueous solutions of the appropriate metal chlorides were prepared in the ratio required except that the initial mole ratio of Fe and dopants to Ba was chosen to be 11:1, and then mixed with excess Na2CO3. The solutions were then cooled, filtered off, dried, then mixed with KCl flux, and heated at 450 degrees C and for 2 h. The temperature was then raised to 950 degrees C and kept for 4 h, then cooled. This new synthesis method, which employs a lower temperature and shorter reaction time, gives products with improved crystallinity and purity while the saturation magnetization and coercivity values are comparable with those synthesized via the high temperature method.
Resumo:
[(VO)-O-IV(acac) 2] reacts with the methanol solution of tridentate ONO donor hydrazone ligands (H2L1-4, general abbreviation H2L; are derived from the condensation of benzoyl hydrazine with 2-hydroxyacetophenone and its 5-substituted derivatives) in presence of neutral monodentate alkyl amine bases having stronger basicity than pyridine e. g., ethylamine, diethylamine, triethylamine and piperidine (general abbreviation B) to produce BH+[VO2L] (1-16) complexes. Five of these sixteen complexes are structurally characterized revealing that the vanadium is present in the anionic part of the molecule, [VO2L] in a distorted square pyramidal environment. The complexes 5, 6, 15 and 16 containing two H-atoms associated with the amine-N atom in their cationic part (e. g., diethylammonium and piperidinium ion) are involved in H-bonding with a neighboring molecule resulting in the formation of centrosymmetric dimers while the complex 12 (containing only one hydrogen atom in the cationic part) exhibits normal H-bonding. The nature of the H-bonds in each of the four centrosymmetric dimeric complexes is different. These complexes have potential catalytic activity in the aerial oxidation of L-ascorbic acid and are converted into the [VO(L)(hq)] complexes containing VO3+ motif on reaction with equimolar amount of 8-hydroxyquinoline (Hhq) in methanol.
Resumo:
Benzene-1,2-dioxyacetic acid (bdoaH2) reacts with Mn(CH3CO2)2·4H2O in an ethanol-water mixture to give the manganese(II) complex [Mn(bdoa)(H2O)3]. The X-ray crystal structure of the complex shows the metal to be pseudo seven-coordinate. The quadridentate bdoa2− dicar☐ylate ligand forms an essentially planar girdle around the metal, being strongly bondedtransoid by a car☐ylate oxygen atom from each of the two car☐ylate moieties (mean MnO 2.199A˚) and also weakly chelated by the two internal ether oxygen atoms (mean MnO 2.413A˚). The coordination sphere about the manganese is completed by three water molecules (mean MnO 2.146A˚) lying in a meridional plane orthogonal to that of the bdoa2− ligand. Magnetic, conductivity and voltammetry data for the complex are given, and its use as a catalyst for the disproportionisation of H2O2 is described.
Resumo:
The two air-stable manganese(II) salicylate complexes [Mn2(Hsal)4(H2O)4]1 and polymeric [{Mn2(sal)2(Hsal)(H2O)(H3O)(py)4·2py}n]2(H2sal = salicylic acid and py = pyridine) have been synthesised easily, and their crystal structures determined. Both contain unsymmetrically bridging salicylate ligands. In the presence of added pyridine 1 and 2 vigorously catalyse the disproportionation of H2O2.
Electrochromic and electrofluorochromic properties of a new boron dipyrromethene–ferrocene conjugate
Resumo:
A new boron dipyrromethene–ferrocene (BODIPY–Fc) conjugate with pentafluorophenyl as the meso substituent and two Fc termini was synthesized and its spectroscopic and electrochemical features were analyzed. An intramolecular charge transfer from the donor Fc to the acceptor BODIPY has been predicted by theory and confirmed experimentally, leading to efficient fluorescence quenching when the dyad is in the neutral state. Fluorescence can be triggered by oxidizing both ferrocenyl units either chemically or electrochemically. Eventually, a fully reversible fluorescence switch is evidenced by coupling TIRF microscopy with electrolysis in an electrochemical cell.
Resumo:
Three new trinuclear heterometallic nickel(II)manganese(II) complexes, [(NiL)2Mn(NCS)2] (1), [(NiL)2Mn(NCO)2] (2), and [{NiL(EtOH)}2Mn(NO2)2]center dot 2EtOH (3), have been synthesized by using [NiL] as the so-called ligand complex [where H2L = N,N'-bis(salicylidene)-1,3-propanediamine] and have been structurally characterized. Crystal structure analyses revealed that complexes 1 and 2 are angular trinuclear species, in which two terminal four-coordinate square planar [NiL] moieties are coordinated to a central MnII through double phenoxido bridges. The MnII is in a six-coordinate distorted octahedral environment that is bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1) and cyanate (in 2). In complex 3, in addition to the double phenoxo bridge, the two terminal NiII ions are linked to the central MnII by means of a nitrite bridge (1?N:2?O) that, together with a coordinated ethanol molecule, gives rise to an octahedral environment around the NiII ions and consequently the structure becomes linear. Catecholase activity of these three complexes was examined by using 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. All three complexes mimic catecholase activity and the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first-order kinetics with respect to the catalyst. The EPR spectra of the complexes exhibit characteristic six line spectra, which indicate the presence of high-spin octahedral MnII species in solution state. The ESI-MS positive spectrum of 1 in the presence of 3,5-DTBC has been recorded to investigate possible complexsubstrate intermediates.
Resumo:
The reaction of cis-[RuCl2(dmso)(4)] with [6-(2-pyridinyl)-5,6-dihydrobenzimidazo[1,2-c] quinazoline] (L) afforded in pure form a blue ruthenium(II) complex, [Ru(L-1)(2)] (1), where the original L changed to [2-(1H-benzoimidazol-2-yl)-phenyl]-pyridin-2-ylmethylene-amine (HL1). Treatment of RuCl3 center dot 3H(2)O with L in dry tetrahydrofuran in inert atmosphere led to a green ruthenium(II) complex, trans-[RuCl2(L-2)(2)] (2), where L was oxidized in situ to the neutral species 6-pyridin-yl-benzo[4,5]imidazo[1,2-c] quinazoline (L-2). Complex 2 was also obtained from the reaction of RuCl3 center dot 3H(2)O with L-2 in dry ethanol. Complexes 1 and 2 have been characterized by physico-chemical and spectroscopic tools, and 1 has been structurally characterized by single-crystal X-ray crystallography. The electrochemical behavior of the complexes shows the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of these complexes with calf thymus DNA by using absorption and emission spectral studies allowed determination of the binding constant K-b and the linear Stern-Volmer quenching constant K-SV