984 resultados para Electronic portal imaging device


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the social dynamics of electronic exchanges in the human services, particularly in social work. It focuses on the observable effects that email and texting have on the linguistic, relational and clinical rather than managerial aspects of the profession. It highlights how electronic communication is affecting professionals in their practice and learners as they become acculturated to social work. What are the gains and losses of the broad use of electronic devices in daily lay and professional, verbal and non-verbal communication? Will our current situation be seriously detrimental to the demeanor of future practitioners, their use of language, and their ability to establish close personal relationships? The paper analyzes social work linguistic and behavioral changes in light of the growth of electronic communication and offers a summary of merits and demerits viewed through a prism emerging from Baron’s (2000) analysis of human communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper I discuss one of the most significant strategies in Spinoza’s theoretical approach against those that entrave its understanding in a very powerful way. As well as Descartes, Spinoza uses the inmediate or unreflexive experience for developing his conception of free will or the distinction between body and soul, but he does so in order to prove that the experience is useful to demonstrate some purely anti-Cartesian thesis that express the core principles of Spinozism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This laboratory session provides hands-on experience for students to visualize the beating human heart with ultrasound imaging. Simple views are obtained from which students can directly measure important cardiac dimensions in systole and diastole. This allows students to derive, from first principles, important measures of cardiac function, such as stroke volume, ejection fraction, and cardiac output. By repeating the measurements from a subject after a brief exercise period, an increase in stroke volume and ejection fraction are easily demonstrable, potentially with or without an increase in left ventricular end-diastolic volume (which indicates preload). Thus, factors that affect cardiac performance can readily be discussed. This activity may be performed as a practical demonstration and visualized using an overhead projector or networked computers, concentrating on using the ultrasound images to teach basic physiological principles. This has proved to be highly popular with students, who reported a significant improvement in their understanding of Frank-Starling's law of the heart with ultrasound imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiuser selection scheduling concept has been recently proposed in the literature in order to increase the multiuser diversity gain and overcome the significant feedback requirements for the opportunistic scheduling schemes. The main idea is that reducing the feedback overhead saves per-user power that could potentially be added for the data transmission. In this work, the authors propose to integrate the principle of multiuser selection and the proportional fair scheduling scheme. This is aimed especially at power-limited, multi-device systems in non-identically distributed fading channels. For the performance analysis, they derive closed-form expressions for the outage probabilities and the average system rate of the delay-sensitive and the delay-tolerant systems, respectively, and compare them with the full feedback multiuser diversity schemes. The discrete rate region is analytically presented, where the maximum average system rate can be obtained by properly choosing the number of partial devices. They optimise jointly the number of partial devices and the per-device power saving in order to maximise the average system rate under the power requirement. Through the authors’ results, they finally demonstrate that the proposed scheme leveraging the saved feedback power to add for the data transmission can outperform the full feedback multiuser diversity, in non-identical Rayleigh fading of devices’ channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a reformulation of the hairy-probe method for introducing electronic open boundaries that is appropriate for steady-state calculations involving nonorthogonal atomic basis sets. As a check on the correctness of the method we investigate a perfect atomic wire of Cu atoms and a perfect nonorthogonal chain of H atoms. For both atom chains we find that the conductance has a value of exactly one quantum unit and that this is rather insensitive to the strength of coupling of the probes to the system, provided values of the coupling are of the same order as the mean interlevel spacing of the system without probes. For the Cu atom chain we find in addition that away from the regions with probes attached, the potential in the wire is uniform, while within them it follows a predicted exponential variation with position. We then apply the method to an initial investigation of the suitability of graphene as a contact material for molecular electronics. We perform calculations on a carbon nanoribbon to determine the correct coupling strength of the probes to the graphene and obtain a conductance of about two quantum units corresponding to two bands crossing the Fermi surface. We then compute the current through a benzene molecule attached to two graphene contacts and find only a very weak current because of the disruption of the π conjugation by the covalent bond between the benzene and the graphene. In all cases we find that very strong or weak probe couplings suppress the current.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid, non-intrusive surface wave surveys provide depth profiles from which ground models can be generated for use in earthwork condition assessment. Stiffness throughout earthworks controls the behaviour under static and dynamic loads, and characterising heterogeneity is of interest in relation to the stability of engineered backfill and life-cycle deterioration in aged utility and transportation infrastructure. Continuous surface wave methods were used to identify interfaces between fine- and coarse-grained fill in an end-tipped embankment along the Great Central Railway in Nottinghamshire, UK. Multichannel analysis of surface wave (MASW) methods were used to characterise subsurface voiding in a canal embankment along the Knottingley and Goole canal near Eggborough, Yorkshire. MASW methods are currently being used to study extreme weather impacts on the stability of a highplasticity clay embankment along the Gloucestershire–Warwickshire railway near Laverton. Optimal results were obtained using equipment capable of generating and detecting over wide frequency ranges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present invention relates to a logic gate, comprising a metamaterial surface enhanced Raman scattering (MetaSERS) sensor, comprising (a) alphabetical metamaterials in the form of split ring resonators operating in the wavelength range of from 560 to 2200 nm; and (b) a guanine (G) and thymine (T)-rich oligonucleotide that can, upon presence of potassium cations (K+), fold into a G-quadruplex structure, and in presence of Hg2+, form a T-Hg2+-T hairpin complex that inhibits or disrupts the G-quadruplex structure formed in presence of K+, as well as methods of operating and using such a logic gate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As we reach the physical limit of Moore’s law and silicon based electronics, alternative schemes for memory and sensor devices are being proposed on
a regular basis. The properties of ferroelectric materials on the nanoscale are key to developing device applications of this intriguing material class, and nanostructuring has been readily pursued in recent times. Focused ion beam (FIB) microscopy is one of the most signi cant techniques for achieving
this. When applied in tandem with the imaging and nanoscale manipulation afforded by proximal scanning force microscopy tools, FIB-driven nanoscale characterization has demonstrated the power and ability which simply may not be possible by other fabrication techniques in the search for innovative and novel ferroic phenomena. At the same time the process is not without pitfalls; it is time-consuming and success is not always guaranteed thus often being the bane in progress. This balanced review explores a brief history of the relationship between the FIB and ferroelectrics, the fascinating properties it has unveiled, the challenges associated with FIB that have led to alterna- tive nanostructuring techniques and nally new ideas that should be explored using this exciting technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum–classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.