992 resultados para Electron micrographs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High frequency Rayleigh and Sezawa modes propagating in the ZnO/GaAs system capable of operating immersed in liquid helium have been engineered. In the case of the Rayleigh mode, the strong attenuation produced by the liquid is counteracted by the strengthening of the mode induced by the ZnO. However, in the case of the Sezawa modes, the attenuation is strongly reduced taking advantage of the depth profile of their acoustic Poynting vectors, that extend deeper into the layered system, reducing the energy radiated into the fluid. Thus, both tailored modes will be suitable for acoustically-driven single-electron and single-photon devices in ZnO-coated GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present electron-beam-induced oxidation of single- and bilayer graphene devices in a low-voltage scanning electron microscope. We show that the injection of oxygen leads to targeted etching at the focal point, enabling us to pattern graphene with a resolution of better than 20 nm. Voltage-contrast imaging, in conjunction with finite-element simulations, explain the secondary-electron intensities and correlate them to the etch profile. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the use of a percolation-field-effect-transistor for the continuous weak measurement of a spatially Rabi oscillating trapped electron through the change in percolation pathway of the transistor channel. In contrast to conventional devices, this detection mechanism in principle does not require a change in the stored energy of the gate capacitance to modify the drain current, so reducing the measurement back-action. The signal-to-noise ratio and measurement bandwidth are seen to be improved compared to conventional devices, allowing further aspects of the dynamic behaviour to be observed. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter, we present a review of our continuing efforts toward the development of discrete, low-dimensional nanostructured carbon-based electron emitters. Carbon nanotubes and nanofibers, herein referred to simply as CNTs, are one-dimensional carbon allotropes formed from cylindrically rolled and nested graphene sheets, have diameters between 1 and 500 nm and lengths of up to several millimeters, and are perfect candidates for field emission (FE) applications. By virtue of their extremely strong sp2 C-C bonding, intrinsic to the graphene hexagonal lattice, CNTs have demonstrated impressive chemical inertness, unprecedented thermal stabilities, significant resistance to electromigration, and exceptionally high axial current carrying capacities, even at elevated temperatures. These near ideal cold cathode electron emitters have incredibly high electric field enhancing aspect ratios combined with virtual point sources of the order of a few nanometers in size. The correct integration and judicious development of suitable FE platforms based on these extraordinary molecules is critical and will ultimately enable enhanced technologies. This chapter will review some of the more recent platforms, devices and structures developed by our group, as well as our contributions towards the development of industry-scalable technologies for ultra-high-resolution electron microscopy, portable x-ray sources, and flexible environmental lighting technologies. © 2012 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monovalent potassium doped manganites Pr0.6Sr 0.4-xKxMnO3 (x = 0.05-0.2) are characterized using the complementary magnetic susceptibility and electron resonance methods. In paramagnetic phase the temperature variations of the inverse magnetic susceptibility and the inverse intensity of resonance signal obey the Curie-Weiss law. A similarity in temperature variation of resonance signal width and the adiabatic polaron conductivity points to the polaron mechanism controlling the resonance linewidth. The low temperature limit of the pure paramagnetic phase is determined from the electron resonance spectra revealing the mixed phase spread down to the Curie temperature. © 2013 Elsevier B.V. All rights reserved.