979 resultados para Electron correlation calculations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of using spin-probe electron spin resonance (ESR) as a tool to study glass transition temperature, T g, of polymer electrolytes is explored in 4 hydroxy 2,2,6,6 tetramethylpiperidine N oxyl (TEMPOL) doped composite polymer electrolyte (PEG)46LiClO4 dispersed with nanoparticles of hydrotalcite. The T g is estimated from the measured values of T 50G, the temperature at which the extrema separation 2A zz of the broad powder spectrum decreases to 50 G. In another method, the correlation time τc for the spin probe dynamics was determined by computer simulation of the ESR spectra and T g has been identified as the temperature at which τc begins to show temperature dependence. While both methods give values of T g close to those obtained from differential scanning calorimetry, it is concluded that more work is required to establish spin-probe ESR as a reliable technique for the determination of T g.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viable stuffed fullerenelike boron carbide nanoclusters, C50B34, C48B36-2, and their isomers based on an icosahedral B-84 fragment of elemental beta-rhombohedral boron have been investigated using density functional theory calculations. The structure and the stability of these clusters are rationalized using the polyhedral skeletal electron counting and ring-cap orbital overlap compatibility rules. The curvature of the fullerene was found to play a vital role in achieving the most stable isomer C50B34(3B). The large highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps, three dimensional aromaticity, and electron detachment energies support their high stability. Further, the IR and Raman active modes were recognized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a self-regularized pseudo-time marching scheme to solve the ill-posed, nonlinear inverse problem associated with diffuse propagation of coherent light in a tissuelike object. In particular, in the context of diffuse correlation tomography (DCT), we consider the recovery of mechanical property distributions from partial and noisy boundary measurements of light intensity autocorrelation. We prove the existence of a minimizer for the Newton algorithm after establishing the existence of weak solutions for the forward equation of light amplitude autocorrelation and its Frechet derivative and adjoint. The asymptotic stability of the solution of the ordinary differential equation obtained through the introduction of the pseudo-time is also analyzed. We show that the asymptotic solution obtained through the pseudo-time marching converges to that optimal solution provided the Hessian of the forward equation is positive definite in the neighborhood of optimal solution. The superior noise tolerance and regularization-insensitive nature of pseudo-dynamic strategy are proved through numerical simulations in the context of both DCT and diffuse optical tomography. (C) 2010 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new analogue of graphene containing boron, carbon and nitrogen (BCN) has been obtained by the reaction of high-surface-area activated charcoal with a mixture of boric acid and urea at 900 degrees C. X-ray photoelectron spectroscopy and electron energy-loss spectroscopy reveal the composition to be close to BCN. The X-ray diffraction pattern, high-resolution electron microscopy images and Raman spectrum indicate the presence of graphite-type layers with low sheet-to-sheet registry. Atomic force microscopy reveals the sample to consist of two to three layers of BCN, as in a few-layer graphene. BCN exhibits more electrical resistivity than graphene, but weaker magnetic features. BCN exhibits a surface area of 2911 m(2)g(-1), which is the highest value known for a BxCyNz composition. It exhibits high propensity for adsorbing CO2 (approximate to 100 wt %) at 195 K and a hydrogen uptake of 2.6 wt % at 77 K. A first-principles pseudopotential-based DFT study shows the stable structure to consist of BN3 and NB3 motifs. The calculations also suggest the strongest CO2 adsorption to occur with a binding energy of 3.7 kJ mol(-1) compared with 2.0 kJ mol(-1) on graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Pt-Au alloy catalyst of varying compositions is prepared by codeposition of Pt and Au nanoparticles onto a carbon support to evaluate its electrocatalytic activity toward an oxygen reduction reaction (ORR) with methanol tolerance in direct methanol fuel cells. The optimum atomic weight ratio of Pt to Au in the carbon-supported Pt-Au alloy (Pt-Au/C) as established by cell polarization, linear-sweep voltammetry (LSV), and cyclic voltammetry (CV) studies is determined to be 2:1. A direct methanol fuel cell (DMFC) comprising a carbon-supported Pt-Au (2:1) alloy as the cathode catalyst delivers a peak power density of 120 mW/cm2 at 70 °C in contrast to the peak power density value of 80 mW/cm2 delivered by the DMFC with carbon-supported Pt catalyst operating under identical conditions. Density functional theory (DFT) calculations on a small model cluster reflect electron transfer from Pt to Au within the alloy to be responsible for the synergistic promotion of the oxygen-reduction reaction on a Pt-Au electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new method for establishing correlation between deuterium and its attached carbon in a deuterated liquid crystal. The method is based on transfer of polarization using the DAPT pulse sequence proposed originally for two spin half nuclei, now extended to a spin-1 and a spin-1/2 nuclei. DAPT utilizes the evolution of magnetization of the spin pair under two blocks of phase shifted BLEW-12 pulses on one of the spins separated by a 90 degree pulse on the other spin. The method is easy to implement and does not need to satisfy matching conditions unlike the Hartmann-Hahn cross-polarization. Experimental results presented demonstrate the efficacy of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head and neck squamous cell cancer (HNSCC) is the sixth most common cancer worldwide. Despite advances in combined modality therapy (surgery, radiotherapy, chemotherapy) the 5-year survival rate in stage III and IV disease remains at 40% - 60%. Short-range Auger-electron emitters, such as In-111 and In-114m, tagged with a drug, molecule, peptide, protein or nanoparticles brought in close proximity to nuclear DNA represent a fascinating alternative for treating cancer. In this thesis, we studied the usefulness of Indium-111-bleomycin complex (In-111-BLMC) in the diagnostics and potential therapy of HNSCC using in vitro HNSCC cell lines, in vivo nude mice, and in vivo HNSCC patients. In in vitro experiments with HNSCC cell lines, the sensitivity to external beam radiation, BLM, In-111-BLMC, and In-111-Cl3 was studied using the 96-well plate clonogenic assay. The influence of BLM and In-111-BLMC on the cell cycle was measured with flow cytometry. In in vivo nude mice xenograft studies, the activity ratios of In-111-BLMC were obtained in gamma camera images. The effect of In-111-BLMC in HNSCC xenografts was studied. In in vivo patient studies, we determined the tumor uptake of In-111-BLMC with gamma camera and the radioactivity from tumor samples using In-111-BLMC with specific activity of 75, 175, or 375 MBq/mg BLM. The S values, i.e. absorbed dose in a target organ per cumulated activity in a source organ, were simulated for In-111 and In-114m. In vitro studies showed the variation of sensitivity for external beam radiation, BLM, and In-111-BLMC between HNSCC cell lines. IC50 values for BLM were 1.6-, 1.8-, and 2.1-fold higher than In-111-BLMC (40 MBq/mg BLM) in three HNSCC cell lines. Specific In-111 activity of 40 MBq/mgBLM was more effective in killing cells than specific In-111 activity of 195MBq/mgBLM (p=0.0023). In-111-Cl3 alone had no killing effect. The percentage of cells in the G2/M phase increased after exposure to BLM and especially to In-111-BLMC in the three cell lines studied, indicating a G2/M block. The tumor-seeking behavior was shown in the in vivo imaging study of xenografted mice. BLM and In-111-BLMC were more effective than NaCl in reducing xenografted tumor size in HNSCC. The uptake ratios received from gamma images in the in vivo patient study varied from 1.2 to 2.8 in malignant tumors. However, the uptake of In-111-BLMC was unaffected by increasing the injected activity. A positive correlation existed between In-111-BLMC uptake, Ki-67/MIB activity, and number of mitoses. Regarding the S values, In-114m delivered a 4-fold absorbed radiation dose into the tumor compared with In-111, and thus, In-114m-BLMC might be more effective than In-111-BLMC at the DNA level. Auger-electron emitters, such as In-111 and In-114m, might have potential in the treatment of HNSCC. Further studies are needed to develop a radiopharmaceutical agent with appropriate physical properties of the radionuclide and a suitable carrier to bring it to the targeted tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There exist many investigations of ionic transport in a variety of glasses. These studies exhibit strong correlation between ionic conductivity and activation energy: Typically, it is found that higher conductivity is associated with lower activation energies and vice versa. Although there are explanations for this at a phenomenological level, there is no consistent physical picture to explain the correlation between conductivity and activation energy. We have carried out molecular dynamics simulation as a function of the size of the impurity atom or diffusant (both neutral and charged) in a host amorphous matrix. We find that there is a maximum in self-diffusivity as a function of the size of the impurity atom suggesting that there is an appropriate size for which the diffusivity is maximum. The activation energy is found to be the lowest for this size of the impurity. A similar maximum has been previously found in other condensed phases, such as confined fluids and dense liquids, and has its origin in the levitation effect. The implications of this result for understanding ionic conductivity in glasses are discussed. Our results suggest that there is a relation between microscopic structure of the amorphous solid, diffusivity or conductivity, and activation energy. The nature of this relationship is discussed in terms of the levitation parameter showing that diffusivity is maximum when the size of the neck or doorway radius is comparable with the size of the diffusant. Our computational results here are in excellent agreement with independent experimental results of Nascimento et al. [Braz. J. Phys. 35, 626 (2005)] that structural features of the glass are important in determining the ionic conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a single-hop data-gathering sensor network, consisting of a set of sensor nodes that transmit data periodically to a base-station. We are interested in maximizing the lifetime of this network. With our definition of network lifetime and the assumption that the radio transmission energy consumption forms the most significant portion of the total energy consumption at a sensor node, we attempt to enhance the network lifetime by reducing the transmission energy budget of sensor nodes by exploiting three system-level opportunities. We pose the problem of maximizing lifetime as a max-min optimization problem subject to the constraint of successful data collection and limited energy supply at each node. This turns out to be an extremely difficult optimization to solve. To reduce the complexity of this problem, we allow the sensor nodes and the base-station to interactively communicate with each other and employ instantaneous decoding at the base-station. The chief contribution of the paper is to show that the computational complexity of our problem is determined by the complex interplay of various system-level opportunities and challenges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polymer-amorphous carbon composites show a negative magnetoconductance which varies as B-2 at low fields which changes to B-1/2 at sufficiently high fields. The magnetoconductance gives the evidence of electron-electron interaction in composites whose conductivity follows thermal fluctuation induced tunneling and falls in the critical regime. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron paramagnetic resonance (EPR) studies and magnetic measurements were carried out on single crystals of multiferroic DyMnO3 in hexagonal as well as orthorhombic structures. The interesting effect of strontium dilution on the frustrated antiferromagnetism of DyMnO3 is also probed using EPR. The line shapes are fitted to broad Lorentzian in the case of pure DyMnO3 and to modified Dysonian in the case of Dy0.5Sr0.5MnO3. The linewidth, integrated intensity, and geff derived from the signals are analyzed as a function of temperature. The results of magnetization measurements corroborate with EPR results. Our study clearly reveals the signature of frustrated magnetism in pure DyMnO3 systems. It is found that antiferromagnetic correlations in these systems persist even above the transition. Moreover, a spin-glass-like behavior in Dy0.5Sr0.5MnO3 is indicated by a steplike feature in the EPR signals at low fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A construction for a family of sequences over the 8-ary AM-PSK constellation that has maximum nontrivial correlation magnitude bounded as theta(max) less than or similar to root N is presented here. The famfly is asymptotically optimal with respect to the Welch bound on maximum magnitude of correlation. The 8-ary AM-PSK constellation is a subset of the 16-QAM constellation. We also construct two families of sequences over 16-QAM with theta(max) less than or similar to root 2 root N. These families are constructed by interleaving sets of sequences. A construction for a famBy of low-correlation sequences over QAM alphabet of size 2(2m) is presented with maximum nontrivial normalized correlation parameter bounded above by less than or similar to a root N, where N is the period of the sequences in the family and where a ranges from 1.61 in the case of 16-QAM modulation to 2.76 for large m. When used in a CDMA setting, the family will permit each user to modulate the code sequence with 2m bits of data. Interestingly, the construction permits users on the reverse link of the CDMA channel to communicate using varying data rates by switching between sequence famflies; associated to different values of the parameter m. Other features of the sequence families are improved Euclidean distance between different data symbols in comparison with PSK signaling and compatibility of the QAM sequence families with sequences belonging to the large quaternary sequence families {S(p)}.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elucidating the structure and dynamics of lamellipodia and filopodia in response to different stimuli is a topic of continuing interest in cancer cells as these structures may be attractive targets for therapeutic purposes. Interestingly, a close functional relationship between these actin-rich protrusions and specialized membrane domains has been recently demonstrated. The aim of this study was therefore to investigate the fine organization of these actin-rich structures and examine how they structurally may relate to detergent-resistant membrane (DRM) domains in the MTLn3 EGF/serum starvation model. For this reason, we designed a straightforward and alternative method to study cytoskeleton arrays and their associated structures by means of correlative fluorescence (/laser)- and electron microscopy (CFEM). CFEM on whole mounted breast cancer cells revealed that a lamellipodium is composed of an intricate filamentous actin web organized in various patterns after different treatments. Both actin dots and DRM's were resolved, and were closely interconnected with the surrounding cytoskeleton. Long actin filaments were repeatedly observed extending beyond the leading edge and their density and length varied after different treatments. Furthermore, CFEM also allowed us to demonstrate the close structural association of DRMs with the cytoskeleton in general and the filamentous/dot-like structural complexes in particular, suggesting that they are all functionally linked and consequently may regulate the cell's fingertip dynamics. Finally, electron tomographic modelling on the same CFEM samples confirmed that these extensions are clearly embedded within the cytoskeletal matrix of the lamellipodium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abrasion and slurry erosion behaviour of chromium-manganese iron samples with chromium (Cr) in the range similar to 16-19% and manganese (Mn) at 5 and 10% levels have been characterized for hardness followed by microstructural examination using optical and scanning electron microscopy. Positron lifetime studies have been conducted to understand the defects/microporosity influence on the microstructure. The samples were heat treated and characterized to understand the structural transformations in the matrix. The data reveals that hardness decreased with increase in Mn content from 5 to 10% in the first instance and then increase in the section size in the other case, irrespective of the sample conditions. The abrasion and slurry erosion losses show increase with increase in the section size as well as with increase in Mn content. The positron results show that as hardness increases from as-cast to heat treated sample, the positron trapping rate and hence defect concentration showed opposite trend as expected. So a good correlation between defects concentration and the hardness has been observed. These findings also corroborate well with the microstructural features obtained from optical and scanning electron microscopy. (C) 2009 Elsevier B. V. All rights reserved.