983 resultados para Electric power factor


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cogeneration may be defined as the simultaneous production of electric power and useful heat from the burning of a single fuel. This technique of combined heat and power production has been applied in both the industrial and tertiary sectors. It has been mainly used because of its overall efficiency, and the guarantee of electricity with a low level of environmental impact. The compact cogeneration systems using internal combustion engine as prime movers are thoroughly applied because of the good relationship among cost and benefit obtained in such devices. The cogeneration system of this study consists of an internal combustion engine using natural gas or biogas as fuel, combined with two heat exchangers and an absorption chiller utilising water-ammonia as working mixture. This work presents an energetic and economic comparison between natural gas and biogas as fuel used for the system proposed. The results are useful to identify the feasible applications for this system, such as residential sector in isolated areas, hotels, universities etc. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transmission expansion planning problem in modern power systems is a large-scale, mixed-integer, nonlinear and non-convex problem. this paper presents a new mathematical model and a constructive heuristic algorithm (CHA) for solving transmission expansion planning problem under new environment of electricity restructuring. CHA finds an acceptable solution in an iterative process, where in each step a circuit is chosen using a sensitivity index and added to the system. The proposed model consider multiple generation scenarios therefore the methodology finds high quality solution in which it allows the power system operate adequacy in an environment with multiple generators scenarios. Case studies and simulation results using test systems show possibility of using Constructive heuristic algorithm in an open access system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers the congestion effects on emission and consumers' allocated cost. In order to consider some environmental and operational effects of congestion, an environmental constrained active-reactive optimal power flow (AROPF) considering capability curve is presented. On outage conditions, the total cost of the system will increase. On the other hand in power systems, the operating cost and system emission have conflicted objectives, then it may be concluded that the outage in the system may lead to a total emission decrease. In this paper the famous Aumann-Shapley method is used as a pricing methodology. Two case studies such as 14-bus and US-bus IEEE test systems are conducted. Results demonstrate that, although the line outage in power systems leads to increase the total cost, the amount of emission depending on the place where the outage occurs can be more than, less than or equal to the normal conditions' emission. Also results show that although from power sellers' standpoint the well-known Aumann-Shapley method is a precise pricing method to cover the incurred cost with an acceptable error that can show the real effect of congestion on consumers' cost, from consumers' standpoint it is not a good method for cost allocation, because some consumers will face with an increase in cost and the others will face with a decrease on their cost.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Faced with an imminent restructuring of the electric power system, over the past few years many countries have invested in a new paradigm known as Smart Grid. This paradigm targets optimization and automation of electric power network, using advanced information and communication technologies. Among the main communication protocols for Smart Grids we have the DNP3 protocol, which provides secure data transmission with moderate rates. The IEEE 802.15.4 is another communication protocol also widely used in Smart Grid, especially in the so-called Home Area Network (HAN). Thus, many applications of Smart Grid depends on the interaction of these two protocols. This paper proposes modeling, in the traditional network simulator NS-2, the integration of DNP3 protocol and the IEEE 802.15.4 wireless standard for low cost simulations of Smart Grid applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The process of electric arc welding with shielding gas (GMAW) is being increasingly used in various industrial applications. This process occurs by which an electric arc is established between the work piece and a consumable in the form of wire, the arc melts the wire continuously as it is fed to the weld pool. The weld metal is protected from the atmosphere by flowing a gas (or gas mixture) inert or active. This paper presents a study of the welding process GMAW - MIG on aluminum tubes, alloy 6101 - T6, used in the manufacture of armored busbar, intended for driving electric power plants. 5(five) were welded specimens, changing certain welding parameters at each time was monitored welding joint as well as the interpass temperature. Tests were performed bending, tensile and macrographical analysis of body-of-evidence and through its results was possible to reach a better welding condition, which minimizes the appearance of pores, since the porosity has great influence on the mechanical strength and electrical conductivity of welded pipes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrical energy is present in the lives of all people and is extremely important that it be delivered to end users with plenty of quality, safety and low costs. The electric power substations are responsible for transmission and distribution of electricity generating sources to consumers, and with technological advances and the subsequent automation of same, the electricity began to be delivered with greater continuity and reliability. Protection systems in substations are largely responsible for making the electricity reaches the final consumer with quality, since their function is to prevent the spread of any type of failure occurred at any point of transmission to the load centers. These systems consist primarily by the current transformers and potential, by the protective relays and circuit breakers and switchgear. The processors send the necessary data to the relays and, if those detect any abnormality in the system, operate the opening command of the branch circuit breakers to isolate where the fault. Therefore, it is essential to better understand the operation of such equipment, as well as the overall system. This work aims to study the main substation equipment, current transformers and potential and, especially, protection relays, in order to obtain the advantages that automated systems can provide

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In wood processing industries, which use electrical equipment in the production process, in most cases these are badly scaled or operate under inadequate conditions, resulting directly in industrial energy efficiency, which proves important because besides having technological innovation, also with practices and policies, aims to decrease power consumption. So in a wiring project should take into account the variables that influence energy efficiency. Thus this work has been reviewed and subsequently calculated some of these variables, such as active power, power factor and demand for the entire industry (global) and also for specific equipment, the chipper. The network analysis was performed in a wood processing industry in the city of Taquarivaí - SP, and evaluated these variables with a network analyzer and also by analysis on energy bills, which were found in both analysis levels below those found in literature. These factors are due to poor design, improper use, storage of equipment or even by characteristic of the production process, ie, the equipment running on empty because of the volatility of production

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the biggest environmental problems of today is the climate change. Experts affirm that this global warming is related to the greenhouse effect. Its causes are directly related to human activity, especially the use of fossil fuels. In this context, companies around the world are challenged to improve energy efficiency in order to reduce the environmental impact and work toward the so-called tripod of sustainable development that focuses on the social, economic and environmental aspects of a business strategy. The first step a company can make in this regard is to conduct an inventory of emissions of greenhouse gases (GHGs). The reduction of GHG emissions in a refinery can be achieved by replacing steam turbines with electric motors to drive big machines, this reduction is achieved by relieving the steam consumption for electric power available or purchased. An important aspect associated with the reduction of GHG emissions is the best performance of the Energy Intensity Index (ERI). The objective of this study was to analyze the feasibility of the blower motorization in the regenerative cycle of a fluidized catalytic cracking unit at a specific refinery. For development work, two methods were used, the initial screening and optimization scenarios with the help of software Butyl. The results indicate that after a certain cost of natural gas this substitution becomes favorable. In addition, there is a large reduction of CO2 emissions avoided by burning fuel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper are compared two methods of deploying electrical substations, conventional type, when installed at open areas (Air Insulated Switchgear - AIS), and compact gas-insulated (Gas Insulated Switchgear - GIS) when installed inside buildings. With the expansion of urban centers, areas available for deployment of conventional substations become increasingly difficult to find in these locations. Also due to speculation in urban areas, it becomes feasible to install Gas Insulated Switchgear. This paper presents and evaluates criteria with advantages and disadvantages for application of the two methodologies, aiming to assist in decisionmaking moment of choice in deployment of Electric Power Substations in two scenarios. It is expected that at the end of this work, the criteria evaluated assist in this decision making

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proposed of scanning of an electrical industrial substation HV is associated with a segment of the Electrotechnical area and aims the study and preliminary application of digital technologies in the protection, control, measurement and automation maneuvers aimed at a Industrial Electrical System typical High Voltage. Well intended to supervision, protection and control of major electrical and thermal quantities involved in a substation, such as voltage levels, current, temperature, power factor, loads of transformers and circuit feeders, status of interlocking devices, switching equipment maneuvers, etc

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work assessment materials can be used as fuel cells electrocatalysts. The alkaline fuel cell though was less studied, has some advantages compared to the acid configuration. The materials assesment were Au polycrystalline and intermetallics ordered phases of AuIn, AuSn and AuSb2. Your electrocatalytic properties were studied across cyclic voltametry and chronoamperometry techniques in Sodium Hydroxide 0,15M and Metanol 0,15M solution. The results obtained show a more efficiency to intermetallic AuIn as electrocatalyst for the oxidation reaction of methanol in alkaline medium, it showed high levels of current density and on set potential less positive compared to Au polycrystalline. The intermetallic AuSn showed activity just higher concentrations of methanol. Except AuSb2, who represented himself unstable in alkaline media, the intermetallics AuIn and AuSn present a promising future as anode materials for the oxidation in alkaline medium

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the imposition of the suspension of production and subsequent banning of incandescent light bulbs will be necessary to replace it by other more energy-efficient. Although the main alternative is the compact fluorescent lamp, the environmental impact caused by it due to incorrect disposal and the amount of harmonics included in the network resulting in losses related to the quality of electric power system makes them sought new alternatives for lighting systems that are efficient and have low environmental impact. In this context, the LED (Lighting Emitting Diode), based on solid-state components, is presented as an option for new projects and replacement of existing lighting. In this work we studied aspects of energy, environmental and economic impacts of a possible replacement of conventional lighting systems for new technology. From laboratory tests and surveys of the costs of different types of lamps used for residential lighting, we performed a comparative analysis considering energy and economic aspects which showed that the LED technology, but has a high initial investment, it is best when power quality and environmental preservation are relevant factors in decision making for the choice of technology to be used in the lighting system

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 2004 two trading environment for contracts of purchase and of electricity energy were established, the Regulated Contracting Environment (RGE) and the Free Contracting Environment (FCE). In the first one, consumers can only buy their energy directly from local electricity distribution, and in the second one, consumers can choose their delivery, amount and type of energy that they will burn through bilateral contracts. Thus, before deciding to migrate to the FCE, it is necessary understanding the rules of marketing, the risk involved and the economic viability of the two markets so can determine which environment has more benefits to the consumer. This paper aims to offer tools to support takeover decision of potentially free costumers, who have the option to migrate to market in order to evaluate the benefits and disadvantages of each market. This paper has also considered the new rules of the third rate cycle, where consumers can opt for green tax. The methodology presented is based on calculations of spending with energy and the risk of flag in captive market and free market in one year