969 resultados para Electric motor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of laser-accelerated protons as a particle probe for the detection of electric fields in plasmas has led in recent years to a wealth of novel information regarding the ultrafast plasma dynamics following high intensity laser-matter interactions. The high spatial quality and short duration of these beams have been essential to this purpose. We will discuss some of the most recent results obtained with this diagnostic at the Rutherford Appleton Laboratory (UK) and at LULI - Ecole Polytechnique (France), also applied to conditions of interest to conventional Inertial Confinement Fusion. In particular, the technique has been used to measure electric fields responsible for proton acceleration from solid targets irradiated with ps pulses, magnetic fields formed by ns pulse irradiation of solid targets, and electric fields associated with the ponderomotive channelling of ps laser pulses in under-dense plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced-size polarized (ZmPolX) basis sets are developed for the second-row atoms X = Si, P, S, and Cl. The generation of these basis sets follows from a simple physical model of the polarization effect of the external electric field which leads to highly compact polarization functions to be added to the chosen initial basis set. The performance of the ZmPolX sets has been investigated in calculations of molecular dipole moments and polarizabilities. Only a small deterioration of the quality of the calculated molecular electric properties has been found. Simultaneously the size of the present reduced-size ZmPolX basis sets is about one-third smaller than that of the usual polarized (PolX) sets. This reduction considerably widens the range of applications of the ZmPolX sets in calculations of molecular dipole moments, dipole polarizabilities, and related properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How the CNS deals with the issue of motor redundancy remains a central question for motor control research. Here we investigate the means by which neuromuscular and biomechanical factors interact to resolve motor redundancy in rhythmic multijoint arm movements. We used a two-df motorised robot arm to manipulate the dynamics of rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow-joint complex. Participants were required to produce rhythmic FE and SP movements, either in isolation, or in combination (at the phase relationship of their choice), while we recorded the activity of key bi-functional muscles. When performed in combination, most participants spontaneously produced an in-phase pattern of coordination in which flexion is synchronised with supination. The activity of the Biceps Brachii (BB), the strongest arm muscle which also has the largest moment arms in both flexion and supination was significantly higher for FE and SP performed in combination than in isolation, suggesting optimal exploitation of the mechanical advantage of this muscle. In a separate condition, participants were required to produce a rhythmic SP movement while a rhythmic FE movement was imposed by the motorised robot. Simulations based upon a musculoskeletal model of the arm demonstrated that in this context, the most efficient use of the force-velocity relationship of BB requires that an anti-phase pattern of coordination (flexion synchronized with pronation) be produced. In practice, the participants maintained the in-phase behavior, and BB activity was higher than for SP performed in isolation. This finding suggests that the neural organisation underlying the exploitation of bifunctional muscle properties, in the natural context, constrains the system to maintain the

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One can partially eliminate motor skills acquired through practice in the hours immediately following practice by applying repetitive transcranial stimulation (rTMS) over the primary motor cortex. The disruption of acquired levels of performance has been demonstrated on tasks that are ballistic in nature. The authors investigated whether motor recall on a discrete aiming task is degraded following a disruption of the primary motor cortex induced via rTMS. Participants (N = 16) maintained acquired performance levels and patterns of muscle activity following the application of rTMS. despite a reduction in corticospinal excitability. Disruption of the primary motor cortex during a consolidation period did not influence the retention of acquired skill in this type of discrete visuomotor task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a consequence of the fragility of various neural structures, preterm infants born at a low gestation and/or birthweight are at an increased risk of developing motor abnormalities. The lack of a reliable means of assessing motor integrity prevents early therapeutic intervention. In this paper, we propose a new method of assessing neonatal motor performance, namely the recording and subsequent analysis of intraoral sucking pressures generated when feeding nutritively. By measuring the infant's control of sucking in terms of a new development of tau theory, normal patterns of intraoral motor control were established for term infants. Using this same measure, the present study revealed irregularities in sucking control of preterm infants. When these findings were compared to a physiotherapist's assessment six months later, the preterm infants who sucked irregularly were found to be delayed in their motor development. Perhaps a goal-directed behaviour such as sucking control that can be measured objectively at a very young age, could be included as part of the neurological assessment of the preterm infant. More accurate classification of a preterm infant's movement abnormalities would allow for early therapeutic interventions to be realised when the infant is still acquiring the most basic of motor functions. (C) Springer-Verlag 2000.