996 resultados para EXTENSIVE AIR-SHOWERS
Resumo:
Cationic dyes, such as methylene blue (MB), Thionine (TH) and Basic Fuschin (BF), but not anionic dyes, such as Acid Orange 7 (AO7), Acid Blue 9 (AB9) and Acid Fuschin (AF), are readily adsorbed onto mesoporous titania films at high pH (pH 11), i.e. well above the pzc of titania (pH 6.5), due to electrostatic forces of attraction and repulsion, respectively. The same anionic dyes, but not the cationic dyes, are readily adsorbed on the same titania films at low pH (pH 3), i.e. well below titania's pzc. MB appears to adsorb on mesoporous titania films at pH 11 as the trimer (lambda(max) = 570 nm) but, upon drying, although the trimer still dominates, there is an absorption peak at 665 nm, especially notable at low [MB], which may be due to the monomer, but more likely MB J-aggregates. In contrast, the absorption spectrum of AO7 adsorbed onto the mesoporous titania film at low pH is very similar to the dye monomer. For both MB and AO7 the kinetics of adsorption are first order and yield high rate constants (3.71 and 1.481 g(-1) min(-1)), indicative of a strong adsorption process. Indeed, both MB and AO7 stained films retained much of their colour when left overnight in dye-free pH 11 and 3 solutions, respectively, indicating the strong nature of the adsorption. The kinetics of the photocatalytic bleaching of the MB-titania films at high pH are complex and not well-described by the Julson-Ollis kinetic model [A.J. Julson, D.F. Ollis, Appl. Catal. B. 65 (2006) 315]. Instead, there appears to be an initial fast but not simple demethylation step, followed by a zero-order bleaching and further demethylation steps. In contrast, the kinetics of photocatalytic bleaching of the AO7-titania film give a good fit to the Julson-Ollis kinetic model, yielding values for the various fitting parameters not too dissimilar to those reported for AO7 adsorbed on P25 titania powder. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The formation of various phases during boronizing of silicided molybdenum substrates (MoSi2/Mo) was investigated. Boronizing treatments were conducted in molten salts under an inert gas atmosphere in the 700-1000 degrees C temperature range for 3-7 h. Depending on the process type (non-current or electrochemical) and molten salt temperature, the formation of different boride phases (MoB, Mo2B5, MoB2, MoB4) was observed. At the same time, substantial oxidation of the bulk molybdenum disilicide phase (MoSi2) to the Mo5Si3 phase was observed in non-current boronizing. The oxidation resistance of the coatings was investigated by the weight change in an air-water (2.3 vol.%) mixture at a temperature of 500 degrees C for a period up to 700 h. Results indicated that a two-phase microstructure consisting of the MoSi2, matrix phase with 12-15 wt.% of the MoB4 phase greatly improved the oxidation resistance of the molybdenum substrates. The weight gain rate observed was 6.5 center dot 10(-4) mg/cm(2) h. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The formation of various coatings in molybdenum-boron and molybdenum-silicon systems was investigated. Boronizing and siliciding treatments were conducted in molten salts under inert gas atmosphere in the 850-1050 degrees C temperature range for 7 h. The presence of boride (e.g. Mo2B, MoB, Mo2B5) and silicide (MoSi2, Mo5Si3) phases, formed on the surface of Mo plates, was confirmed by X-ray diffraction analysis. The distribution of elements was determined by means of wavelength dispersive spectroscopy (WDS) spectra of the surface and line-scan analyses from surface to interior. Depending on the process type (diffusional or electrochemical) and temperature, the thickness of the protective layers formed on the substrate ranged from 6 to 40 gm. The oxidation resistance of obtained phases was investigated in an air-water mixture in the temperature range of 500-700 degrees C for a period up to 400 h. An improved oxidation behavior of coated plates in comparison with that of pure molybdenum was observed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A wide range of organic pollutants can be destroyed by semiconductor photocatalysis using titania. The purification of water and air contaminated with organic pollutants has been investigated by semiconductor photocatalysis for many years and in attempts to improve the purification rate platinum and palladium have been deposited, usually as fine particles, on the titania surface. Such deposits are expected to improve the rate of reduction of oxygen and so reduce the probability of electron-hole recombination and increase the overall rate of the reaction. The effectiveness of the deposits is reviewed here and appears very variable with reported rate enhancement factors ranging from 8 to 0.1. Semiconductor photocatalysis can be used to purify air (at temperatures > 100 degrees C) and Pt deposits can markedly improve the overall rate of mineralisation. However, volatile organic compounds containing an heteroatom can deactivate the photocatalyst completely and irreversibly. Factors contributing to the success of the processes are considered. The use of chloro-Pt(IV)-titania and other chloro-platinum group metals-titania complexes as possible visible light sensitisers for water and air purification is briefly reviewed.