961 resultados para EHRLICH ASCITES TUMOR
Resumo:
OBJECTIVE To evaluate the initiation of and response to tumor necrosis factor (TNF) inhibitors for axial spondyloarthritis (axSpA) in private rheumatology practices versus academic centers. METHODS We compared newly initiated TNF inhibition for axSpA in 363 patients enrolled in private practices with 100 patients recruited in 6 university hospitals within the Swiss Clinical Quality Management (SCQM) cohort. RESULTS All patients had been treated with ≥ 1 nonsteroidal antiinflammatory drug and > 70% of patients had a baseline Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) ≥ 4 before anti-TNF agent initiation. The proportion of patients with nonradiographic axSpA (nr-axSpA) treated with TNF inhibitors was higher in hospitals versus private practices (30.4% vs 18.7%, p = 0.02). The burden of disease as assessed by patient-reported outcomes at baseline was slightly higher in the hospital setting. Mean levels (± SD) of the Ankylosing Spondylitis Disease Activity Score were, however, virtually identical in private practices and academic centers (3.4 ± 1.0 vs 3.4 ± 0.9, p = 0.68). An Assessment of SpondyloArthritis international Society (ASAS40) response at 1 year was reached for ankylosing spondylitis in 51.7% in private practices and 52.9% in university hospitals (p = 1.0) and for nr-axSpA in 27.5% versus 25.0%, respectively (p = 1.0). CONCLUSION With the exception of a lower proportion of patients with nr-axSpA newly treated with anti-TNF agents in private practices in comparison to academic centers, adherence to ASAS treatment recommendations for TNF inhibition was equally high, and similar response rates to TNF blockers were achieved in both clinical settings.
Resumo:
BACKGROUND Five-aminolevulinic acid (Gliolan, medac, Wedel, Germany, 5-ALA) is approved for fluorescence-guided resections of adult malignant gliomas. Case reports indicate that 5-ALA can be used for children, yet no prospective study has been conducted as of yet. As a basis for a study, we conducted a survey among certified European Gliolan users to collect data on their experiences with children. METHODS Information on patient characteristics, MRI characteristics of tumors, histology, fluorescence qualities, and outcomes were requested. Surgeons were further asked to indicate whether fluorescence was "useful", i.e., leading to changes in surgical strategy or identification of residual tumor. Recursive partitioning analysis (RPA) was used for defining cohorts with high or low likelihoods for useful fluorescence. RESULTS Data on 78 patients <18 years of age were submitted by 20 centers. Fluorescence was found useful in 12 of 14 glioblastomas (85 %), four of five anaplastic astrocytomas (60 %), and eight of ten ependymomas grades II and III (80 %). Fluorescence was found inconsistently useful in PNETs (three of seven; 43 %), gangliogliomas (two of five; 40 %), medulloblastomas (two of eight, 25 %) and pilocytic astrocytomas (two of 13; 15 %). RPA of pre-operative factors showed tumors with supratentorial location, strong contrast enhancement and first operation to have a likelihood of useful fluorescence of 64.3 %, as opposed to infratentorial tumors with first surgery (23.1 %). CONCLUSIONS Our survey demonstrates 5-ALA as being used in pediatric brain tumors. 5-ALA may be especially useful for contrast-enhancing supratentorial tumors. These data indicate controlled studies to be necessary and also provide a basis for planning such a study.
Resumo:
hrsg. von Josef Nobel
Resumo:
BACKGROUND: Ischemia-reperfusion injury (IRI) significantly contributes to graft dysfunction after liver transplantation. Natural killer (NK) cells are crucial innate effector cells in the liver and express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a potent inducer of hepatocyte cell death. Here, we investigated if TRAIL expression on NK cells contributes to hepatic IRI. METHODS: The outcome after partial hepatic IRI was assessed in TRAIL-null mice and contrasted to C57BL/6J wild-type mice and after NK cell adoptive transfer in RAG2/common gamma-null mice that lack T, B, and NK cells. Liver IRI was assessed by histological analysis, alanine aminotransferase, hepatic neutrophil activation by myeloperoxidase activity, and cytokine secretion at specific time points. NK cell cytotoxicity and differentiation were assessed in vivo and in vitro. RESULTS: Twenty-four hours after reperfusion, TRAIL-null mice exhibited significantly higher serum transaminases, histological signs of necrosis, neutrophil infiltration, and serum levels of interleukin-6 compared to wild-type animals. Adoptive transfer of TRAIL-null NK cells into immunodeficient RAG2/common gamma-null mice was associated with significantly elevated liver damage compared to transfer of wild-type NK cells. In TRAIL-null mice, NK cells exhibit higher cytotoxicity and decreased differentiation compared to wild-type mice. In vitro, cytotoxicity against YAC-1 and secretion of interferon gamma by TRAIL-null NK cells were significantly increased compared to wild-type controls. CONCLUSIONS: These experiments reveal that expression of TRAIL on NK cells is protective in a murine model of hepatic IRI through modulation of NK cell cytotoxicity and NK cell differentiation.
Resumo:
A tetrathiafulvalene (TTF)-fused piazselenole as a novel redox-active probe for highly sensitive determination of physiological thiols by electrochemical detection has been synthesised and successfully tested in intracellular non-protein thiol detection, reaching a detection limit of 10−10 M.
Resumo:
INTRODUCTION Anatomic imaging alone is often inadequate for tuning systemic treatment for individual tumor response. Optically based techniques could potentially contribute to fast and objective response monitoring in personalized cancer therapy. In the present study, we evaluated the feasibility of dual-modality diffuse reflectance spectroscopy-autofluorescence spectroscopy (DRS-AFS) to monitor the effects of systemic treatment in a mouse model for hereditary breast cancer. METHODS Brca1(-/-); p53(-/-) mammary tumors were grown in 36 mice, half of which were treated with a single dose of cisplatin. Changes in the tumor physiology and morphology were measured for a period of 1 week using dual-modality DRS-AFS. Liver and muscle tissues were also measured to distinguish tumor-specific alterations from systemic changes. Model-based analyses were used to derive different optical parameters like the scattering and absorption coefficients, as well as sources of intrinsic fluorescence. Histopathologic analysis was performed for cross-validation with trends in optically based parameters. RESULTS Treated tumors showed a significant decrease in Mie-scattering slope and Mie-to-total scattering fraction and an increase in both fat volume fraction and tissue oxygenation after 2 days of follow-up. Additionally, significant tumor-specific changes in the fluorescence spectra were seen. These longitudinal trends were consistent with changes observed in the histopathologic analysis, such as vital tumor content and formation of fibrosis. CONCLUSIONS This study demonstrates that dual-modality DRS-AFS provides quantitative functional information that corresponds well with the degree of pathologic response. DRS-AFS, in conjunction with other imaging modalities, could be used to optimize systemic cancer treatment on the basis of early individual tumor response.
Resumo:
A new family of peptide receptors, the incretin receptor family, overexpressed on many neuroendocrine tumors (NETs) is of great importance because it may enable the in vivo peptide-based receptor targeting of a category of NETs that does not express the somatostatin receptor. Impressive in vivo diagnostic data were published for glucagonlike peptide 1 receptor-targeting radiopeptides. Recently, promising in vitro data have appeared for the second member of the incretin family, the glucose-dependent insulinotropic polypeptide (GIP) receptor. This prompted us to develop and evaluate a new class of radioligands with the potential to be used for the in vivo targeting of GIP receptor-positive tumors. METHODS GIP(1-42) was modified C-terminally, and the truncated peptides [Lys(30)(aminohexanoic acid [Ahx]-DOTA)]GIP(1-30)NH2 (EG1), [Lys(16)(Ahx-DOTA)]GIP(1-30)NH2 (EG2), and [Nle(14), Lys(30)(Ahx-DOTA)]GIP(1-30)NH2 (EG4) were conjugated with Ahx-DOTA via the Lys(16) and Lys(30) side chains. Their inhibitory concentration of 50% (IC50) was determined using [(125)I-Tyr(10)]GIP(1-30) as radioligand and GIP(1-30) as control peptide. The DOTA conjugates were labeled with (111)In and (68)Ga. In vitro evaluation included saturation and internalization studies using the pancreatic endocrine cell line INR1G9 transfected with the human GIP receptor (INR1G9-hGIPr). The in vivo evaluation consisted of biodistribution and PET imaging studies on nude mice bearing INR1G9-hGIPr tumors. RESULTS Binding studies (IC50 and saturation studies) showed high affinity toward GIP receptor for the GIP conjugates. Specific in vitro internalization was found, and almost the entire cell-associated activity was internalized (>90% of the cell-bound activity), supporting the agonist potency of the (111)In-vectors. (111)In-EG4 and (68)Ga-EG4 were shown to specifically target INR1G9-hGIPr xenografts, with tumor uptake of 10.4% ± 2.2% and 17.0% ± 4.4% injected activity/g, 1 h after injection, respectively. Kidneys showed the highest uptake, which could be reduced by approximately 40%-50% with a modified-fluid-gelatin plasma substitute or an inhibitor of the serine protease dipeptidyl peptidase 4. The PET images clearly visualized the tumor. CONCLUSION The evaluation of EG4 as a proof-of-principle radioligand indicated the feasibility of imaging GIP receptor-positive tumors. These results prompt us to continue the development of this family of radioligands for imaging of a broad spectrum of NETs.
Resumo:
Multiple somatostatin receptor (sst)-subtype expression has been manifested in several human tumors. Hence, the availability of radiopeptides retaining the full pansomatostatin profile of the native hormone (SS14) is expected to increase the sensitivity and broaden the clinical indications of currently applied sst2-preferring cyclic octapeptide radioligands, like OctreoScan(®) ([(111)In-DTPA]octreotide). On the other hand, SS14 has been excluded from clinical use due to its rapid in vivo degradation. We herein present a small library of seven novel cyclic SS14-mimics carrying at their N-terminus the universal chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) for stable binding of medically useful radiometals, like (111)In. By decreasing the number of amino acids composing the ring in their structure from 12 up to 6 AA, we induced important changes in key-biological parameters in vitro and in vivo. In particular, we observed unexpected changes and even total loss of sst1-5-affinity (6AA-ring), as well as weaker sst2-internalization efficacy as the ring size decreased. In contrast, in vivo stability increased with decreasing ring size, reaching its maximum in the 6AA-ring analogs. Interestingly, only the 12AA- and 9AA-ring members of this series showed sst2-specific uptake in AR4-2J tumors in mice revealing the prominent role of ring size on the biological response of tested SS14-derived radioligands.
Resumo:
Tumours of the paranasal sinuses are relatively uncommon in the horse. A collision tumour occurs when 2 separate tumour types arise in close proximity to each other and encroach on one another. This report describes the presence of neoplasia comprising glandular tissue and spindle cells growing concurrently in the frontal and caudal maxillary sinus of a geriatric donkey. As far as the authors are aware, this is the first description of a possible collision tumour in an equid.
Resumo:
A lipidomic and metabolomic investigation of serum and liver from mice was performed to gain insight into the tumor suppressor gene Hint1. A major reprogramming of lipid homeostasis was found in both serum and liver of Hint1-null (Hint(-/-)) mice, with significant changes in the levels of many lipid molecules, as compared with gender-, age-, and strain-matched WT mice. In the Hint1(-/-) mice, serum total and esterified cholesterol were reduced 2.5-fold, and lysophosphatidylcholines (LPCs) and lysophosphatidic acids were 10-fold elevated in serum, with a corresponding fall in phosphatidylcholines (PCs). In the liver, MUFAs and PUFAs, including arachidonic acid (AA) and its metabolic precursors, were also raised, as was mRNA encoding enzymes involved in AA de novo synthesis. There was also a significant 50% increase in hepatic macrophages in the Hint1(-/-) mice. Several hepatic ceramides and acylcarnitines were decreased in the livers of Hint1(-/-) mice. The changes in serum LPCs and PCs were neither related to hepatic phospholipase A2 activity nor to mRNAs encoding lysophosphatidylcholine acetyltransferases 1-4. The lipidomic phenotype of the Hint1(-/-) mouse revealed decreased inflammatory eicosanoids with elevated proliferative mediators that, combined with decreased ceramide apoptosis signaling molecules, may contribute to the tumor suppressor activity of Hint1.
Resumo:
BACKGROUND: The understanding of molecular mechanisms leading to poor prognosis in pancreatic cancer may help develop treatment options. N-myc downstream-regulated gene-1 (NDRG1) has been correlated to better prognosis in pancreatic cancer. Therefore, we thought to analyze how the loss of NDRG1 affects progression in an orthotopic xenograft animal model of recurrence. METHODS: Capan-1 cells were silenced for NDRG1 (C(sil)) or transfected with scrambled shRNA (C(scr)) and compared for anchorage-dependent and anchorage-independent growth, invasion and tube formation in vitro. In an orthotopic xenograft model of recurrence tumors were grown in the pancreatic tail. The effect of NDRG1 silencing was evaluated on tumor size and metastasis. RESULTS: The silencing of NDRG1 in Capan-1 cells leads to more aggressive tumor growth and metastasis. We found faster cell growth, double count of invaded cells and 1.8-fold increase in tube formation in vitro. In vivo local tumors were 5.9-fold larger (p = 0.006) and the number of metastases was higher in animals with tumors silenced for NDRG1 primarily (3 vs. 1.1; p = 0.005) and at recurrence (3.3 vs. 0.9; p = 0.015). CONCLUSION: NDRG1 may be an interesting therapeutic target as its silencing in human pancreatic cancer cells leads to a phenotype with more aggressive tumor growth and metastasis.