947 resultados para EFFECTIVE PROPERTIES
Resumo:
The fast advances in nanotechnology have raised increasing concerns related to the safety of nanomaterials when exposed to humans, animals and the environment. However, despite several years of research, the nanomaterials safety field is still in its infancy owing to the complexities of structural and surface properties of these nanomaterials and organism-specific responses to them. Recently, plasma-based technology has been demonstrated as a versatile and effective way for nanofabrication, yet its health and environment-benign nature has not been widely recognized. Here we address the environmental and occupational health and safety effects of various zero- and one-dimensional nanomaterials and elaborate the advantages of using plasmas as a safe nanofabrication tool. These advantages include but are not limited to the production of substrate-bound nanomaterials, the isolation of humans from harmful nanomaterials, and the effective reforming of toxic and flammable gases. It is concluded that plasma nanofabrication can minimize the hazards in the workplace and represents a safe way for future nanofabrication technologies.
Resumo:
The results on the synthesis, mechanical and electrical properties of carbon microcoils and nanocoils (CMCs, CNCs) synthesized using catalytic CVD and Ni-P and Co-P catalyst alloys, respectively, are reported. SEM analysis reveals that the CMCs and CNCs have unique helical morphologies, and diameters of 5.0-9.0 μm and 450-550 nm, respectively. Moreover, CMCs with flat cross-section can be stretched to 3 times their original coil lengths. Current-voltage characteristics of a single microcoil have also been obtained. It is found that the CMCs have the electrical conductivity between 100 and 160 S/cm, whereas the electrical resistance increases by about 20% during the coil extension. Besides, the microcoils can produce light in vacuum when the test voltage reaches 10 V. The emission intensity increases as the voltage increases. The mechanical and electrical properties of CMCs and CNC make them potentially useful in many applications in micromagnetic sensors, mechanical microsprings and optoelectronics.