969 resultados para E6 VARIANTS
Resumo:
Background: Single nucleotide polymorphisms (SNPs) are the most frequent type of sequence variation between individuals, and represent a promising tool for finding genetic determinants of complex diseases and understanding the differences in drug response. In this regard, it is of particular interest to study the effect of non-synonymous SNPs in the context of biological networks such as cell signalling pathways. UniProt provides curated information about the functional and phenotypic effects of sequence variation, including SNPs, as well as on mutations of protein sequences. However, no strategy has been developed to integrate this information with biological networks, with the ultimate goal of studying the impact of the functional effect of SNPs in the structure and dynamics of biological networks. Results: First, we identified the different challenges posed by the integration of the phenotypic effect of sequence variants and mutations with biological networks. Second, we developed a strategy for the combination of data extracted from public resources, such as UniProt, NCBI dbSNP, Reactome and BioModels. We generated attribute files containing phenotypic and genotypic annotations to the nodes of biological networks, which can be imported into network visualization tools such as Cytoscape. These resources allow the mapping and visualization of mutations and natural variations of human proteins and their phenotypic effect on biological networks (e.g. signalling pathways, protein-protein interaction networks, dynamic models). Finally, an example on the use of the sequence variation data in the dynamics of a network model is presented. Conclusion: In this paper we present a general strategy for the integration of pathway and sequence variation data for visualization, analysis and modelling purposes, including the study of the functional impact of protein sequence variations on the dynamics of signalling pathways. This is of particular interest when the SNP or mutation is known to be associated to disease. We expect that this approach will help in the study of the functional impact of disease-associated SNPs on the behaviour of cell signalling pathways, which ultimately will lead to a better understanding of the mechanisms underlying complex diseases.
Resumo:
Background: Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results: This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC.Conclusion: This study proposes that variation at putative 8q24 cis-regulator(s) of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.
Resumo:
Copy number variants contribute extensively to inter-individual genomic differences, but little is known about their inter-population variability and diversity. In a previous study (Bosch et al., 2007; 16:2572-2582), we reported that the primate-specific gene family FAM90A, which accounts for as many as 25 members in the human reference assembly, has expanded the number of FAM90A clusters across the hominoid lineage. Here we examined the copy number variability of FAM90A genes in 260 HapMap samples of European, African, and Asian ancestry, and showed significant inter-population differences (p<0.0001). Based on the recent study of Stranger et al. (2007; 315:848-853), we also explored the correlation between copy number variability and expression levels of the FAM90A gene family. Despite the high genomic variability, we found a low correlation between FAM90A copy number and expression levels, which could be due to the action of independent trans-acting factors. Our results show that FAM90A is highly variable in copy number between individuals and between populations. However, this variability has little impact on gene expression levels, thus highlighting the importance of genomic variability for genes located in regions containing segmental duplications.
Resumo:
Contexte : la prévalence des épisodes dépressifs majeurs parmi la population âgée générale est de 1-4%. Plusieurs études proposent la dissociation entre la dépression à début tardive (late onset depression, LOD), plus souvent associée à des déficits neuropsychologiques, des lésions cérébrales et des facteurs de risque cardio-vasculaire, et la dépression à début précoce (early onset depression, EOD) associée, elle, aux facteurs génétiques et à certains profiles de personnalité. Toutefois, aucune étude transversale ou longitudinale n'a jusqu'à maintenant mesuré et comparé de façon concomitante les profiles cognitifs, la neuro-imagerie (IRM) et les profiles de personnalité des patients âgés LOD et EOD euthymiques. Méthodes : ce travail se base sur une étude menée par différents services des Hôpitaux Universitaires de Genève (HUG) et du Centre Hospitalier Universitaire Vaudois (CHUV) qui ont collaboré afin de recruter le collectif de patients dépressifs nécessaire. La partie expérimentale est divisée en deux parties. La première, transversale, compare 30 EOD, 11 LOD et 30 sujets contrôles, puis 38 EOD à 62 sujets contrôles. Une évaluation neuropsychologique, des évaluations des lésions et volumes cérébraux à l'IRM, ainsi que des traits de personnalité ont été effectuées. La deuxième partie, longitudinale, évalue sur 2 ans 28 patients EOD à 48 sujets contrôles avec les mêmes outils. Résultats : lors de la première partie, transversale, les performances cognitives et les volumes cérébraux sont préservés chez les patients EOD, alors que les patients LOD présentent une réduction significative de la mémoire épisodique et un taux plus élevé de lésions cérébrales périventriculaires (hyperintensités de la matière blanche) en comparaison avec les patients EOD et les sujets contrôles. Au niveau des traits de personnalité, les patients EOD sont associés à un niveau élevé de Névrosisme, en particulier les facettes Anxiété (N1) et Dépression (N3) mais diminué d'Extraversion, en particulier les facettes Chaleur (E1) et Emotions positives (E6). Dans la seconde partie, longitudinale, les performances cognitives et les volumes cérébraux des patients EOD sont restés, après les 2 ans de suivi (follow-up) comparables aux sujets contrôles. Les niveaux élevés du Névrosisme et sa facette Anxiété (N1) constatés au baseline diminuèrent pour atteindre un niveau normal. Les niveaux diminués des facettes Chaleur (E1) et Emotions positives (E6) au baseline ne persistèrent pas non plus. Seule la facette Dépression (N3) est restée chez les patients EOD significativement plus élevée que chez les sujets contrôles après les 2 ans de suivi. Conclusion : nos résultats supportent la dissociation entre EOD, associée à des facteurs génétiques et psychosociaux, et LOD associée aux facteurs de risque et comorbidités cardio-vasculaires. Après rémission d'un épisode dépressif aigu, les performances cognitives ainsi que les volumes cérébraux des patients EOD restent intactes au long terme, alors que le patient LOD garde des lésions cérébrales ainsi que des atteintes au niveau de la mémoire épisodique. Au niveau de la personnalité, la facette Dépression (N3) du domaine Névrosisme, connu pour être un facteur de risque de dépression, reste une caractéristique bien présente chez le patient EOD.
Resumo:
AIMS: To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. METHODS AND RESULTS: Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. CONCLUSIONS: The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.
Resumo:
Identification of genetic risk factors for albuminuria may alter strategies for early prevention of CKD progression, particularly among patients with diabetes. Little is known about the influence of common genetic variants on albuminuria in both general and diabetic populations. We performed a meta-analysis of data from 63,153 individuals of European ancestry with genotype information from genome-wide association studies (CKDGen Consortium) and from a large candidate gene study (CARe Consortium) to identify susceptibility loci for the quantitative trait urinary albumin-to-creatinine ratio (UACR) and the clinical diagnosis microalbuminuria. We identified an association between a missense variant (I2984V) in the CUBN gene, which encodes cubilin, and both UACR (P = 1.1 × 10(-11)) and microalbuminuria (P = 0.001). We observed similar associations among 6981 African Americans in the CARe Consortium. The associations between this variant and both UACR and microalbuminuria were significant in individuals of European ancestry regardless of diabetes status. Finally, this variant associated with a 41% increased risk for the development of persistent microalbuminuria during 20 years of follow-up among 1304 participants with type 1 diabetes in the prospective DCCT/EDIC Study. In summary, we identified a missense CUBN variant that associates with levels of albuminuria in both the general population and in individuals with diabetes.
Resumo:
AIMS/HYPOTHESIS: Epidemiological and experimental evidence suggests that uric acid has a role in the aetiology of type 2 diabetes. Using a Mendelian randomisation approach, we investigated whether there is evidence for a causal role of serum uric acid for development of type 2 diabetes. METHODS: We examined the associations of serum-uric-acid-raising alleles of eight common variants recently identified in genome-wide association studies and summarised this in a genetic score with type 2 diabetes in case-control studies including 7,504 diabetes patients and 8,560 non-diabetic controls. We compared the observed effect size to that expected based on: (1) the association between the genetic score and uric acid levels in non-diabetic controls; and (2) the meta-analysed uric acid level to diabetes association. RESULTS: The genetic score showed a linear association with uric acid levels, with a difference of 12.2 μmol/l (95% CI 9.3, 15.1) by score tertile. No significant associations were observed between the genetic score and potential confounders. No association was observed between the genetic score and type 2 diabetes with an OR of 0.99 (95% CI 0.94, 1.04) per score tertile, significantly different (p = 0.046) from that expected (1.04 [95% CI 1.03, 1.05]) based on the observed uric acid difference by score tertile and the uric acid to diabetes association of 1.21 (95% CI 1.14, 1.29) per 60 μmol/l. CONCLUSIONS/INTERPRETATION: Our results do not support a causal role of serum uric acid for the development of type 2 diabetes and limit the expectation that uric-acid-lowering drugs will be effective in the prevention of type 2 diabetes.
Resumo:
Hypertension is a common heritable cardiovascular risk factor. Some rare monogenic forms of hypertension have been described, but the majority of patients suffer from essential hypertension, for whom the underlying genetic mechanisms are not clear. Essential hypertension is a complex trait, involving multiple genes and environmental factors. Recently, progress in the identification of common genetic variants associated with essential hypertension has been made due to large-scale international collaborative projects. In this article we review the new research methods used as well as selected recent findings in this field.
Resumo:
The antiretroviral protein TRIM5alpha is known to have evolved different restriction capacities against various retroviruses, driven by positive Darwinian selection. However, how these different specificities have evolved in the primate lineages is not fully understood. Here we used ancestral protein resurrection to estimate the evolution of antiviral restriction specificities of TRIM5alpha on the primate lineage leading to humans. We used TRIM5alpha coding sequences from 24 primates for the reconstruction of ancestral TRIM5alpha sequences using maximum-likelihood and Bayesian approaches. Ancestral sequences were transduced into HeLa and CRFK cells. Stable cell lines were generated and used to test restriction of a panel of extant retroviruses (human immunodeficiency virus type 1 [HIV-1] and HIV-2, simian immunodeficiency virus [SIV] variants SIV(mac) and SIV(agm), and murine leukemia virus [MLV] variants N-MLV and B-MLV). The resurrected TRIM5alpha variant from the common ancestor of Old World primates (Old World monkeys and apes, approximately 25 million years before present) was effective against present day HIV-1. In contrast to the HIV-1 restriction pattern, we show that the restriction efficacy against other retroviruses, such as a murine oncoretrovirus (N-MLV), is higher for more recent resurrected hominoid variants. Ancestral TRIM5alpha variants have generally limited efficacy against HIV-2, SIV(agm), and SIV(mac). Our study sheds new light on the evolution of the intrinsic antiviral defense machinery and illustrates the utility of functional evolutionary reconstruction for characterizing recently emerged protein differences.
Resumo:
We evaluated 25 protocol variants of 14 independent computational methods for exon identification, transcript reconstruction and expression-level quantification from RNA-seq data. Our results show that most algorithms are able to identify discrete transcript components with high success rates but that assembly of complete isoform structures poses a major challenge even when all constituent elements are identified. Expression-level estimates also varied widely across methods, even when based on similar transcript models. Consequently, the complexity of higher eukaryotic genomes imposes severe limitations on transcript recall and splice product discrimination that are likely to remain limiting factors for the analysis of current-generation RNA-seq data.
Resumo:
Several hypotheses might explain the evolution and maintenance of colour morphs within animal populations. The 'alternative foraging strategy' hypothesis states that alternative colour morphs exploit different ecological niches. This hypothesis predicts that morphs differ in diet, either because foraging success on alternative prey species is morph-dependent or because differently coloured individuals exploit alternative habitats. I examined this prediction in the Barn Owl Tyto alba, a bird that varies in plumage coloration continuously from dark reddish-brown to white. On the European continent, Owls are light-coloured (subspecies T. a. alba) in the south and reddish-brown (T. a. guttata) in the north; in central Europe the two subspecies interbreed, generating many colour variants. If plumage coloration indicates alternative foraging strategies, in sympatry dark- and light-coloured owls should consume prey species that are typical of the diets of T. a. guttata and T. a. alba in allopatry, respectively. In line with this prediction, both in allopatry and in sympatry in Switzerland T. a. guttata fed primarily upon Common Voles Microtus arvalis and T. a. alba upon Wood Mice Apodemus spp. Statistical analyses suggest that morph-dependent diet did not arise from a non-random habitat distribution of owls with respect to plumage coloration. This suggests that foraging success upon alternative prey is morph-dependent.
Resumo:
OBJECTIVE: To identify the genetic causes underlying early-onset autosomal recessive retinitis pigmentosa (arRP) in the Spanish population and describe the associated phenotype. DESIGN: Case series. PARTICIPANTS: A total of 244 unrelated families affected by early-onset arRP. METHODS: Homozygosity mapping or exome sequencing analysis was performed in 3 families segregating arRP. A mutational screening was performed in 241 additional unrelated families for the p.Ser452Stop mutation. Haplotype analysis also was conducted. Individuals who were homozygotes, double heterozygotes, or carriers of mutations in RP1 underwent an ophthalmic evaluation to establish a genotype-phenotype correlation. MAIN OUTCOME MEASURES: DNA sequence variants, homozygous regions, haplotypes, best-corrected visual acuity, visual field assessments, electroretinogram responses, and optical coherence tomography images. RESULTS: Four novel mutations in RP1 were identified. The new mutation p.Ser542Stop was present in 11 of 244 (4.5%) of the studied families. All chromosomes harboring this mutation shared the same haplotype. All patients presented a common phenotype with an early age of onset and a prompt macular degeneration, whereas the heterozygote carriers did not show any signs of retinitis pigmentosa (RP). CONCLUSIONS: p.Ser542Stop is a single founder mutation and the most prevalent described mutation in the Spanish population. It causes early-onset RP with a rapid macular degeneration and is responsible for 4.5% of all cases. Our data suggest that the implication of RP1 in arRP may be underestimated. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Resumo:
BACKGROUND: APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) has antiretroviral activity associated with the hypermutation of viral DNA through cytosine deamination. APOBEC3G has two cytosine deaminase (CDA) domains; the catalytically inactive amino-terminal domain of APOBEC3G (N-CDA) carries the Vif interaction domain. There is no 3-D structure of APOBEC3G solved by X-ray or nuclear magnetic resonance. METHODOLOGY/PRINCIPAL FINDINGS: We predicted the structure of human APOBEC3G based on the crystal structure of APOBEC2. To assess the model structure, we evaluated 48 mutants of APOBEC3G N-CDA that identify novel variants altering DeltaVif HIV-1 infectivity and packaging of APOBEC3G. Results indicated that the key residue D128 is exposed at the surface of the model, with a negative local electrostatic potential. Mutation D128K changes the sign of that local potential. In addition, two novel functionally relevant residues that result in defective APOBEC3G encapsidation, R122 and W127, cluster at the surface. CONCLUSIONS/SIGNIFICANCE: The structure model identifies a cluster of residues important for packaging of APOBEC3G into virions, and may serve to guide functional analysis of APOBEC3G.
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Resumo:
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
Resumo:
Human papillomaviruses (HPV)-related cervical cancer is the second leading cause of cancer death in women worldwide. Despite active development, HPV E6/E7 oncogene-specific therapeutic vaccines have had limited clinical efficacy to date. Here, we report that intravaginal (IVAG) instillation of CpG-ODN (TLR9 agonist) or poly-(I:C) (TLR3 agonist) after subcutaneous E7 vaccination increased ∼fivefold the number of vaccine-specific interferon-γ-secreting CD8 T cells in the genital mucosa (GM) of mice, without affecting the E7-specific systemic response. The IVAG treatment locally increased both E7-specific and total CD8 T cells, but not CD4 T cells. This previously unreported selective recruitment of CD8 T cells from the periphery by IVAG CpG-ODN or poly-(I:C) was mediated by TLR9 and TLR3/melanoma differentiation-associated gene 5 signaling pathways, respectively. For CpG, this recruitment was associated with a higher proportion of GM-localized CD8 T cells expressing both CCR5 and CXCR3 chemokine receptors and E-selectin ligands. Most interestingly, IVAG CpG-ODN following vaccination led to complete regression of large genital HPV tumors in 75% of mice, instead of 20% with vaccination alone. These findings suggest that mucosal application of immunostimulatory molecules might substantially increase the effectiveness of parenterally administered vaccines.Mucosal Immunology advance online publication 12 September 2012; doi:10.1038/mi.2012.83.