997 resultados para Dynamic forecasting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the year 2007 a General Observation Period (GOP) has been performed within the German Priority Program on Quantitative Precipitation Forecasting (PQP). By optimizing the use of existing instrumentation a large data set of in-situ and remote sensing instruments with special focus on water cycle variables was gathered over the full year cycle. The area of interest covered central Europe with increasing focus towards the Black Forest where the Convective and Orographically-induced Precipitation Study (COPS) took place from June to August 2007. Thus the GOP includes a variety of precipitation systems in order to relate the COPS results to a larger spatial scale. For a timely use of the data, forecasts of the numerical weather prediction models COSMO-EU and COSMO-DE of the German Meteorological Service were tailored to match the observations and perform model evaluation in a near real-time environment. The ultimate goal is to identify and distinguish between different kinds of model deficits and to improve process understanding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models play a vital role in supporting a range of activities in numerous domains. We rely on models to support the design, visualisation, analysis and representation of parts of the world around us, and as such significant research effort has been invested into numerous areas of modelling; including support for model semantics, dynamic states and behaviour, temporal data storage and visualisation. Whilst these efforts have increased our capabilities and allowed us to create increasingly powerful software-based models, the process of developing models, supporting tools and /or data structures remains difficult, expensive and error-prone. In this paper we define from literature the key factors in assessing a model’s quality and usefulness: semantic richness, support for dynamic states and object behaviour, temporal data storage and visualisation. We also identify a number of shortcomings in both existing modelling standards and model development processes and propose a unified generic process to guide users through the development of semantically rich, dynamic and temporal models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ensemble forecasting of nonlinear systems involves the use of a model to run forward a discrete ensemble (or set) of initial states. Data assimilation techniques tend to focus on estimating the true state of the system, even though model error limits the value of such efforts. This paper argues for choosing the initial ensemble in order to optimise forecasting performance rather than estimate the true state of the system. Density forecasting and choosing the initial ensemble are treated as one problem. Forecasting performance can be quantified by some scoring rule. In the case of the logarithmic scoring rule, theoretical arguments and empirical results are presented. It turns out that, if the underlying noise dominates model error, we can diagnose the noise spread.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For forecasting and economic analysis many variables are used in logarithms (logs). In time series analysis, this transformation is often considered to stabilize the variance of a series. We investigate under which conditions taking logs is beneficial for forecasting. Forecasts based on the original series are compared to forecasts based on logs. For a range of economic variables, substantial forecasting improvements from taking logs are found if the log transformation actually stabilizes the variance of the underlying series. Using logs can be damaging for the forecast precision if a stable variance is not achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates whether using natural logarithms (logs) of price indices for forecasting inflation rates is preferable to employing the original series. Univariate forecasts for annual inflation rates for a number of European countries and the USA based on monthly seasonal consumer price indices are considered. Stochastic seasonality and deterministic seasonality models are used. In many cases, the forecasts based on the original variables result in substantially smaller root mean squared errors than models based on logs. In turn, if forecasts based on logs are superior, the gains are typically small. This outcome sheds doubt on the common practice in the academic literature to forecast inflation rates based on differences of logs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air distribution systems are one of the major electrical energy consumers in air-conditioned commercial buildings which maintain comfortable indoor thermal environment and air quality by supplying specified amounts of treated air into different zones. The sizes of air distribution lines affect energy efficiency of the distribution systems. Equal friction and static regain are two well-known approaches for sizing the air distribution lines. Concerns to life cycle cost of the air distribution systems, T and IPS methods have been developed. Hitherto, all these methods are based on static design conditions. Therefore, dynamic performance of the system has not been yet addressed; whereas, the air distribution systems are mostly performed in dynamic rather than static conditions. Besides, none of the existing methods consider any aspects of thermal comfort and environmental impacts. This study attempts to investigate the existing methods for sizing of the air distribution systems and proposes a dynamic approach for size optimisation of the air distribution lines by taking into account optimisation criteria such as economic aspects, environmental impacts and technical performance. These criteria have been respectively addressed through whole life costing analysis, life cycle assessment and deviation from set-point temperature of different zones. Integration of these criteria into the TRNSYS software produces a novel dynamic optimisation approach for duct sizing. Due to the integration of different criteria into a well- known performance evaluation software, this approach could be easily adopted by designers in busy nature of design. Comparison of this integrated approach with the existing methods reveals that under the defined criteria, system performance is improved up to 15% compared to the existing methods. This approach is interpreted as a significant step forward reaching to the net zero emission building in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays utilising the proper HVAC system is essential both in extreme weather conditions and dense buildings design. Hydraulic loops are the most common parts in all air conditioning systems. This article aims to investigate the performance of different hydraulic loop arrangements in variable flow systems. Technical, economic and environmental assessments have been considered in this process. A dynamic system simulation is generated to evaluate the system performance and an economic evaluation is conducted by whole life cost assessment. Moreover, environmental impacts have been studied by considering the whole life energy consumption, CO2 emission, the embodied energy and embodied CO2 of the system components. Finally, decision-making in choosing the most suitable hydraulic system among five well-known alternatives has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluate a number of real estate sentiment indices to ascertain current and forward-looking information content that may be useful for forecasting the demand and supply activities. Our focus lies on sector-specific surveys targeting the players from the supply-side of both residential and non-residential real estate markets. Analyzing the dynamic relationships within a Vector Auto-Regression (VAR) framework, we test the efficacy of these indices by comparing them with other coincident indicators in predicting real estate returns. Overall, our analysis suggests that sentiment indicators convey important information which should be embedded in the modeling exercise to predict real estate market returns. Generally, sentiment indices show better information content than broad economic indicators. The goodness of fit of our models is higher for the residential market than for the non-residential real estate sector. The impulse responses, in general, conform to our theoretical expectations. Variance decompositions and out-of-sample predictions generally show desired contribution and reasonable improvement respectively, thus upholding our hypothesis. Quite remarkably, consistent with the theory, the predictability swings when we look through different phases of the cycle. This perhaps suggests that, e.g. during recessions, market players’ expectations may be more accurate predictor of the future performances, conceivably indicating a ‘negative’ information processing bias and thus conforming to the precautionary motive of consumer behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issue of whether Real Estate Investment Trusts should pursue a focused or diversified investment strategy remains an ongoing debate within both the academic and industry communities. This paper considers the relationship between REITs focused on different property sectors in a GARCH-DCC framework. The daily conditional correlations reveal that since 1990 there has been a marked upward trend in the coefficients between US REIT sub-sectors. The findings imply that REITs are behaving in a far more homogeneous manner than in the past. Furthermore, the argument that REITs should be focused in order that investors can make the diversification decision is reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid expansion of the TMT sector in the late 1990s and more recent growing regulatory and corporate focus on business continuity and security have raised the profile of data centres. Data centres offer a unique blend of occupational, physical and technological characteristics compared to conventional real estate assets. Limited trading and heterogeneity of data centres also causes higher levels of appraisal uncertainty. In practice, the application of conventional discounted cash flow approaches requires information about a wide range of inputs that is difficult to derive from limited market signals or estimate analytically. This paper outlines an approach that uses pricing signals from similar traded cash flows is proposed. Based upon ‘the law of one price’, the method draws upon the premise that two identical future cash flows must have the same value now. Given the difficulties of estimating exit values, an alternative is that the expected cash flows of data centre are analysed over the life cycle of the building, with corporate bond yields used to provide a proxy for the appropriate discount rates for lease income. Since liabilities are quite diverse, a number of proxies are suggested as discount and capitalisation rates including indexed-linked, fixed interest and zero-coupon bonds. Although there are rarely assets that have identical cash flows and some approximation is necessary, the level of appraiser subjectivity is dramatically reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an experimental application of constrained predictive control and feedback linearisation based on dynamic neural networks. It also verifies experimentally a method for handling input constraints, which are transformed by the feedback linearisation mappings. A performance comparison with a PID controller is also provided. The experimental system consists of a laboratory based single link manipulator arm, which is controlled in real time using MATLAB/SIMULINK together with data acquisition equipment.