992 resultados para Dynamic conditional execution
The dynamic development and distribution of gas cells in breadmaking dough during proving and baking
Resumo:
Two experiments implement and evaluate a training scheme for learning to apply frequency formats to probability judgements couched in terms of percentages. Results indicate that both conditional and cumulative probability judgements can be improved in this manner, however the scheme is insufficient to promote any deeper understanding of the problem structure. In both experiments, training on one problem type only (either conditional or cumulative risk judgements) resulted in an inappropriate transfer of a learned method at test. The obstacles facing a frequency-based training programme for teaching appropriate use of probability data are discussed. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Inverse problems for dynamical system models of cognitive processes comprise the determination of synaptic weight matrices or kernel functions for neural networks or neural/dynamic field models, respectively. We introduce dynamic cognitive modeling as a three tier top-down approach where cognitive processes are first described as algorithms that operate on complex symbolic data structures. Second, symbolic expressions and operations are represented by states and transformations in abstract vector spaces. Third, prescribed trajectories through representation space are implemented in neurodynamical systems. We discuss the Amari equation for a neural/dynamic field theory as a special case and show that the kernel construction problem is particularly ill-posed. We suggest a Tikhonov-Hebbian learning method as regularization technique and demonstrate its validity and robustness for basic examples of cognitive computations.
Resumo:
This paper investigates the use of really simple syndication (RSS) to dynamically change virtual environments. The case study presented here uses meteorological data downloaded from the Internet in the form of an RSS feed, this data is used to simulate current weather patterns in a virtual environment. The downloaded data is aggregated and interpreted in conjunction with a configuration file, used to associate relevant weather information to the rendering engine. The engine is able to animate a wide range of basic weather patterns. Virtual reality is a way of immersing a user into a different environment, the amount of immersion the user experiences is important. Collaborative virtual reality will benefit from this work by gaining a simple way to incorporate up-to-date RSS feed data into any environment scenario. Instead of simulating weather conditions in training scenarios, actual weather conditions can be incorporated, improving the scenario and immersion.
Resumo:
How can a bridge be built between autonomic computing approaches and parallel computing system? The work reported in this paper is motivated towards bridging this gap by proposing swarm-array computing, a novel technique to achieve autonomy for distributed parallel computing systems. Among three proposed approaches, the second approach, namely 'Intelligent Agents' is of focus in this paper. The task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier. agents and can be seamlessly transferred between cores in the event of a pre-dicted failure, thereby achieving self-ware objectives of autonomic computing. The feasibility of the proposed approach is validated on a multi-agent simulator.
Resumo:
Researchers at the University of Reading have developed over many years some simple mobile robots that explore an environment they perceive through simple ultrasonic sensors. Information from these sensors has allowed the robots to learn the simple task of moving around while avoiding dynamic obstacles using a static set of fuzzy automata, the choice of which has been criticised, due to its arbitrary nature. This paper considers how a dynamic set of automata can overcome this criticism. In addition, a new reinforcement learning function is outlined which is both scalable to different numbers and types of sensors. The innovations compare successfully with earlier work.
Resumo:
This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.
Resumo:
Dense deployments of wireless local area networks (WLANs) are fast becoming a permanent feature of all developed cities around the world. While this increases capacity and coverage, the problem of increased interference, which is exacerbated by the limited number of channels available, can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. In an earlier work, an asynchronous, distributed and dynamic channel assignment scheme has been proposed that (1) is simple to implement, (2) does not require any knowledge of the throughput function, and (3) allows asynchronous channel switching by each access point (AP). In this paper, we present extensive performance evaluation of this scheme when it is deployed in the more practical non-uniform and dynamic topology scenarios. Specifically, we investigate its effectiveness (1) when APs are deployed in a nonuniform fashion resulting in some APs suffering from higher levels of interference than others and (2) when APs are effectively switched `on/off' due to the availability/lack of traffic at different times, which creates a dynamically changing network topology. Simulation results based on actual WLAN topologies show that robust performance gains over other channel assignment schemes can still be achieved even in these realistic scenarios.