950 resultados para Drug-induced Apoptosis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biochemistry, 2003, 42 (10), pp 3070–3080 DOI: 10.1021/bi026979d

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Nevirapine is widely used for the treatment of HIV-1 infection; however, its chronic use has been associated with severe liver and skin toxicity. Women are at increased risk for these toxic events, but the reasons for the sex-related differences are unclear. Disparities in the biotransformation of nevirapine and the generation of toxic metabolites between men and women might be the underlying cause. The present work aimed to explore sex differences in nevirapine biotransformation as a potential factor in nevirapine-induced toxicity. METHODS: All included subjects were adults who had been receiving 400 mg of nevirapine once daily for at least 1 month. Blood samples were collected and the levels of nevirapine and its phase I metabolites were quantified by HPLC. Anthropometric and clinical data, and nevirapine metabolite profiles, were assessed for sex-related differences. RESULTS: A total of 52 patients were included (63% were men). Body weight was lower in women (P = 0.028) and female sex was associated with higher alkaline phosphatase (P = 0.036) and lactate dehydrogenase (P = 0.037) levels. The plasma concentrations of nevirapine (P = 0.030) and the metabolite 3-hydroxy-nevirapine (P = 0.035), as well as the proportions of the metabolites 12-hydroxy-nevirapine (P = 0.037) and 3-hydroxy-nevirapine (P = 0.001), were higher in women, when adjusted for body weight. CONCLUSIONS: There was a sex-dependent variation in nevirapine biotransformation, particularly in the generation of the 12-hydroxy-nevirapine and 3-hydroxy-nevirapine metabolites. These data are consistent with the sex-dependent formation of toxic reactive metabolites, which may contribute to the sex-dependent dimorphic profile of nevirapine toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electron microscopy study shows that the administration of a single dose (500 mg/kg, p.o.) of 2-amino-5-(1-methyl-5-nitro-2-imidazolyl)-1, 3, 4-thiadiazole induces in mice infected with Trypanosoma cruzi results in degenerative lesions of the intracellular stages. Ultrastructural alterations are detected as early as 6 hours after the drug administration and destruction of the parasites occurs within 18 - 36 hours. Trypomastigotes are cleared from the bloodstream 4 to 6 hours after treatment. The combined effect on both developmental stages is apparently responsible for the in vivo ejfects of this drug which is the most active drug ever tested in our laboratory in experimental Chagas' disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Widely used in cancer treatment, chemotherapy still faces hindering challenges, ranging from severe induced toxicity to drug resistance acquisition. As means to overcome these setbacks, newly synthetized compounds have recently come into play with the basis of improved pharmacokinetic/pharmacodynamic properties. With this mind-set, this project aimed towards the antiproliferative potential characterization of a group of metallic compounds. Additionally the incorporation of the compounds within a nanoformulation and within new combination strategies with commercial chemotherapeutic drugs was also envisaged. Cell viability assays presented copper (II) compound (K4) as the most promising, presenting an IC50 of 6.10 μM and 19.09 μM for HCT116 and A549 cell line respectively. Exposure in fibroblasts revealed a 9.18 μM IC50. Hoechst staining assays further revealed the compound’s predisposition to induce chromatin condensation and nuclear fragmentation in HCT116 upon exposure to K4 which was later demonstrated by flow cytometry and annexin V-FITC/propidium iodide double staining analysis (under 50 % cell death induction). The compound further revealed the ability to interact with major macromolecules such as DNA (Kb = 2.17x105 M-1), inducing structural brakes and retardation, and further affecting cell cycle progression revealing delay in S-phase. Moreover BSA interactions were also visible however not conclusive. Proteome profiling revealed overexpression of proteins involved in metabolic activity and underexpression of proteins involved in apoptosis thus corroborating Hoechst and apoptosis flow cytometry data. K4 nanoformulation suffered from several hindrances and was ill succeeded in part due to K4’s poor solubility in aqueous buffers. Other approaches were considered in this regard. Combined chemotherapy assays revealed high cytotoxicity for afatinib and lapatinib strategies. Lapatinib and K4 proteome profiling further revealed high apoptosis rates, high metabolic activity and activation of redundant proteins as part of compensatory mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical effectiveness of imatinib mesylate in cancer treatment is compromised by its off-target cardiotoxicity. In the present study, we have developed physically stable imatinib mesylate-loaded poly(lactide-co-glycolide) nanoparticles (INPs) that could sustainably release the drug, and studied its efficacy by in vitro anticancer and in vivo cardiotoxicity assays. MTT (methylthiazolyldiphenyl-tetrazolium bromide) assay revealed that INPs are more cytotoxic to MCF-7 breast cancer cells compared to the equivalent concentration of free imatinib mesylate. Wistar rats orally administered with 50 mg/kg INPs for 28 days showed no significant cardiotoxicity or associated changes. Whereas, increased alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase levels, and reduced white blood cell, red blood cell, and hemoglobin content were observed in the animals administered with free drug. While the histological sections from hearts of animals that received INPs did not show any significant cardiotoxic symptoms, loss of normal architecture and increased cytoplasmic vacuolization were observed in the heart sections of animals administered with free imatinib mesylate. Based on these results, we conclude that nano-encapsulation of imatinib mesylate increases its efficacy against cancer cells, with almost no cardiotoxicity.