999 resultados para Drug Urges


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using liposomes to deliver drugs to and through human skin is controversial, as their function varies with type and composition. Thus they may act as drug carriers controlling release of the medicinal agent. Alternatively, they may provide a localized depot in the skin so minimizing systemic effects or can be used for targeting delivery to skin appendages (hair follicles and sweat glands). Liposomes may also enhance transdermal drug delivery, increasing systemic drug concentrations. With such a multiplicity of functions, it is not surprising that mechanisms of liposomal delivery of therapeutic agents to and through the skin are unclear. Accordingly, this article provides an overview of the modes and mechanisms of action of different vesicles as drug delivery vectors in human skin. Our conclusion is that vesicles, depending on the composition and method of preparation, can vary with respect to size, lamellarity, charge, membrane fluidity or elasticity and drug entrapment. This variability allows for multiple functions ranging from local to transdermal effects. Application to dissimilar skins (animal or human) via diverse protocols may reveal different mechanisms of action with possible vesicle skin penetration reaching different depths, from surface assimilation to (rarely) the viable tissue and subsequent systemic absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important step in liposome characterization is to determine the location of a drug within the liposome. This work thus investigated the interaction of dipalmitoylphosphatidylcholine liposomes with drugs of varied water solubility, polar surface area (PSA) and partition coefficient using high sensitivity differential scanning calorimetry. Lipophilic estradiol (ES) interacted strongest with the acyl chains of the lipid membrane, followed by the somewhat polar 5-fluorouracil (5-FU). Strongly hydrophilic mannitol (MAN) showed no evidence of interaction but water soluble polymers inulin (IN) and an antisense oligonucleotide (OLG), which have very high PSAs, interacted with the lipid head groups. Accordingly, the drugs could be classified as: hydrophilic ones situated in the aqueous core and which may interact with the head groups; those located at the water-bilayer interface with some degree of penetration into the lipid bilayer; those lipophilic drugs constrained within the bilayer. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study has explored the underlying causes of preventable drug-related admissions to hospital, from primary care through semi-structured interviews and review of patients’ medical records. Analysis of the data has revealed that communication failures between different groups of healthcare professionals and between healthcare professionals and patients contribute to preventable drug-related admissions, as do knowledge gaps about medication in both healthcare professionals and patients. In addition, working conditions for community pharmacists severely limit their ability to effectively act as a safety barrier to patients receiving inappropriate medication. Limitations include heavy workloads, lack of access to patients’ clinical information, poor relationships with general practitioners and time restrictions. The results of this study represent an important addition to our understanding of the contribution of human error as an underlying cause of preventable drug-related morbidity, and the factors which contribute to errors occurring in the primary healthcare setting.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study probes the molecular interactions between model drugs and poloxamers that facilitate dissolution rate improvements using solid dispersions. Ibuprofen and ketoprofen solid dispersions were prepared at different mole ratios using poloxamers 407 and 188. The carbonyl stretching vibration of the ibuprofen dimer shifted to higher wavenumber in the infrared spectra of 2:1 drug:carrier mole ratio solid dispersions, indicating disruption of the ibuprofen dimer concomitant with hydrogen bond formation between the drug and carrier. Solid dispersions with mole ratios >2:1 drug:carrier (up to 29:1) showed both ibuprofen hydrogen-bonded to the poloxamer, and excess drug present as dimers. X-ray diffraction studies confirmed these findings with no evidence of crystalline drug in 2:1 mole ratio systems whereas higher drug loadings retained crystalline ibuprofen. Similar results were found with ketoprofen-poloxamer solid dispersions. Thermal analysis of ibuprofen-poloxamer 407 solid dispersions and their resultant phase diagram suggested solid solutions and a eutectic system were formed, depending on drug loading. Dissolution studies showed fastest release from the solid solutions; dissolution rates from solid solutions were 12-fold greater than the dissolution of ibuprofen powder whereas the eutectic system gave a 6-fold improvement over the powder. When designing solid dispersions to improve the delivery of poorly-water soluble drugs, the nature of drug:carrier interactions, which are governed by the stochiometry of the composition, can affect the dissolution rate improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there have been major developments in the understanding of the cell cycle. It is now known that normal cellular proliferation is tightly regulated by the activation and deactivation of a series of proteins that constitute the cell cycle machinery. The expression and activity of components of the cell cycle can be altered during the development of a variety of diseases where aberrant proliferation contributes to the pathology of the illness. Apart from yielding a new source of untapped therapeutic targets, it is likely that manipulating the activity of such proteins in diseased states will provide an important route for treating proliferative disorders, and the opportunity to develop a novel class of future medicines.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heterogeneous solid catalyst, mercaptopropylsilica (MPS), has been prepared by a modified procedure in water and its structure confirmed by solid state carbon-13 CP-MAS NMR spectrum. This catalyst has been efficiently utilized for the synthesis of a wide variety of tri-, tetrasubstituted imidazoles and their bis-analogues at room temperature. The protocol was further explored for the synthesis of the drug trifenagrel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mucosa-mimetic polymeric hydrogels have been developed to replace the use of animal tissues as substrates for characterising mucoadhesive properties of drug delivery systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An active pharmaceutical ingredient (API) was found to dissociate from the highly crystalline hydrochloride form to the amorphous free base form, with consequent alterations to tablet properties. Here, a wet granulation manufacturing process has been investigated using in situ Fourier transform (FT)-Raman spectroscopic analyses of granules and tablets prepared with different granulating fluids and under different manufacturing conditions. Dosage form stability under a range of storage stresses was also investigated. Despite the spectral similarities between the two drug forms, low levels of API dissociation could be quantified in the tablets; the technique allowed discrimination of around 4% of the API content as the amorphous free base (i.e. less than 1% of the tablet compression weight). API dissociation was shown to be promoted by extended exposure to moisture. Aqueous granulating fluids and manufacturing delays between granulation and drying stages and storage of the tablets in open conditions at 40◦C/75% relative humidity (RH) led to dissociation. In contrast, non-aqueous granulating fluids, with no delay in processing and storage of the tablets in either sealed containers or at lower temperature/humidity prevented detectable dissociation. It is concluded that appropriate manufacturing process and storage conditions for the finished product involved minimising exposure to moisture of the API. Analysis of the drug using FT-Raman spectroscopy allowed rapid optimisation of the process whilst offering quantitative molecular information concerning the dissociation of the drug salt to the amorphous free base form.