989 resultados para Dissolved organic matter (DOM)
Resumo:
Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt carbon stored in cryoturbated material.
Resumo:
Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called "priming effect" might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.
Resumo:
The temporal variability of delta(13)C in suspended particulate organic matter (POM) and oyster Crassostrea gigas along a salinity gradient was investigated from May 1992 to September 1993 within the estuarine bay of Marennes-Oleron (France). During this period the mean daily discharge of the Charente River exhibited large seasonal variation, with a high discharge from November 1992 to January 1993. Contrary to that at the river mouth and the marine littoral, delta(13)C in POM and in oysters at mid-estuary was affected by the high flood period. The delta(13)C values of POM decreased in mid-estuary and remained at low levels during the high discharge period, indicating an increasing contribution of terrestrial inputs to the estuarine POM pool. At the same site, a remarkable decrease of delta(13)C in oysters occurred between December 1992 and March 1993 (after a time lag compared to the ambient POM), indicating incorporation of terrestrial organic matter in oyster tissues during the high flood discharge. The lag between the delta(13)C decrease in POM and oysters is attributed to the time needed for oyster tissues to incorporate enough newly terrestrial light carbon to be recognized by the delta(13)C measure (about 1 to 2 mo). This time interval depends on tissue turnover time. The delta(13)C POM decrease (i.e. 1.3 parts per thousand) cannot explain entirely the decrease observed in oysters (i.e. 2.3 parts per thousand). In fact, the pattern exhibited by mid-estuarine oysters can be explained by the increasing contribution of terrestrial organic matter to their feeding, and the inability to preferentially utilize specific components of the estuarine POM that are C-13-enriched.
Resumo:
The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C center dot yr(-1)). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C center dot yr(-1)) is considerable and represents almost a third of the atmospheric CO2 uptake in the region.
Resumo:
Many efforts are currently oriented toward extracting more information from ocean color than the chlorophyll a concentration. Among biological parameters potentially accessible from space, estimates of phytoplankton cell size and light absorption by colored detrital matter (CDM) would lead to an indirect assessment of major components of the organic carbon pool in the ocean, which would benefit oceanic carbon budget models. We present here 2 procedures to retrieve simultaneously from ocean color measurements in a limited number of bands, magnitudes, and spectral shapes for both light absorption by CDM and phytoplankton, along with a size parameter for phytoplankton. The performance of the 2 procedures was evaluated using different data sets that correspond to increasing uncertainties: ( 1) measured absorption coefficients of phytoplankton, particulate detritus, and colored dissolved organic matter ( CDOM) and measured chlorophyll a concentrations and ( 2) SeaWiFS upwelling radiance measurements and chlorophyll a concentrations estimated from global algorithms. In situ data were acquired during 3 cruises, differing by their relative proportions in CDM and phytoplankton, over a continental shelf off Brazil. No local information was introduced in either procedure, to make them more generally applicable. Over the study area, the absorption coefficient of CDM at 443 nm was retrieved from SeaWiFS radiances with a relative root mean square error (RMSE) of 33%, and phytoplankton light absorption coefficients in SeaWiFS bands ( from 412 to 510 nm) were retrieved with RMSEs between 28% and 33%. These results are comparable to or better than those obtained by 3 published models. In addition, a size parameter of phytoplankton and the spectral slope of CDM absorption were retrieved with RMSEs of 17% and 22%, respectively. If these methods are applied at a regional scale, the performances could be substantially improved by locally tuning some empirical relationships.
Resumo:
Dissertação de Mestrado, Tecnologia dos Alimentos, Instituto Superior de Engenharia, Universidade do Algarve, 2014
Resumo:
Soil organic matter (SOM) plays a key role in maintaining the productivity of tropical soils, providing energy and substrate for the biological activity and modifying the physical and chemical characteristics that ensure the maintenance of soil quality and the sustainability of ecosystems. This study assessed the medium-term effect (six years) of the application of five organic composts, produced by combining different agro-industrial residues, on accumulation and chemical characteristics of soil organic matter. Treatments were applied in a long-term experiment of organic management of mango (OMM) initiated in 2005 with a randomized block design with four replications. Two external areas, one with conventional mango cultivation (CMM) and the other a fragment of regenerating Caatinga vegetation (RCF), were used as reference areas. Soil samples were collected in the three management systems from the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers, and the total organic carbon content and chemical fractions of organic matter were evaluated by determining the C contents of humin and humic and fulvic acids. Organic compost application significantly increased the contents of total C and C in humic substances in the experimental plots, mainly in the surface layer. However, compost 3 (50 % coconut bagasse, 40 % goat manure, 10 % castor bean residues) significantly increased the level of the non-humic fraction, probably due to the higher contents of recalcitrant material in the initial composition. The highest increases from application of the composts were in the humin, followed by the fulvic fraction. Compost application increased the proportion of higher molecular weight components, indicating higher stability of the organic matter.
Resumo:
Clomazone (2-(2-chlorophenyl) methyl-4.4-dimethyl-3-isoxazolidinone) is a post emergence herbicide widely used in rice fields in Rio Grande do Sul (Brazil) with high activity against Gramineae at the recommended application rate of 700 g/ha. The presence of this chemical in the water may affect microorganisms responsible for the decomposition of organic matter. Thus, a disturbe in the trophic chain sustained by the decompositors could happen. In the present work the decomposition rate of organic matter (Typha latifolia) exposed to several concentrations of a clomazone formulation: 0 (control), 25.0, 62.0, 156.0, 390.0 and 976.0mg/L on the basis of the active ingredient was evaluated. Five litter bags containing about 3.0g of pieces of T. latifolia leaves wereplaced in aquariums with 15 of reconstituted water. In cach aquarium were added 500g of sediment from the same place of the plant collection, as a source of decompositors microorganisms. The results relative tothe control, showed that the decomposition rate in the highest and lowest dose was reduced in 50.05 and 1,28%, respectively, after 80 days.
Resumo:
The aim of this study was to assess the organic matter changes in quantity and quality, particularly of the humic fraction in the surface layer (0?20 cm), of a Typic Plinthustalf soil under different management of plant mixtures used as green manure for mango (Mangifera indica L.) crops. The plant mixtures, which were seeded between rows of mango trees, were formed by two groups of leguminous and non -leguminous plants. Prior to sowing, seeds were combined in different proportions and compositions constituting the following treatments: 100% non-leguminous species (NL); 100% leguminous species (L); 75% L and 25% NL; 50% L and 50% NL; 25% L and 75% NL; and 100% spontaneous vegetation, considered a control. The plant mixtures that grew between rows of mango trees caused changes in the chemical composition of the soil organic matter, especially for the treatments 50% L and 50% NL and 25% L and 75% NL, which increased the content of humic substances in the soil organic matter. However, the treatment 25% L and 75% NL was best at minimising loss of total organic carbon from the soil. The humic acids studied have mostly aliphatic characteristics, showing large amounts of carboxylic and nitrogen groups and indicating that most of the organic carbon was formed by humic substances, with fulvic acid dominating among the alkali soluble fractions.
Resumo:
ABSTRACT: Changes in carbon stocks in different compartments of soil organic matter of a clayey Latossolo Vermelho Distrófico (Typic Haplustox), caused by the substitution of native savanna vegetation (cerrado sensu stricto) by agroecosystems, were assessed after 31 years of cultivation. Under native vegetation, a stock of 164.5 Mg ha-1 C was estimated in the 0.00-1.00 m layer. After 31 years of cultivation, these changes in soil C stocks were detected to a depth of 0.60 m. In the case of substitution of cerrado sensu stricto by no-tillage soybean-corn rotation, a reduction of at least 11 % of the soil C pools was observed. However, the adoption of no-tillage as an alternative to tillage with a moldboard plow (conventional system) reduced CO2 emissions by up to 12 %.
Resumo:
Soil organic matter (SOM) is important to fertility, since it performs several functions such as cycling, water and nutrient retention and soil aggregation, in addition to being an energy requirement for biological activity. This study proposes new trends to the Embrapa, Walkley-Black, and Mebius methods that allowed the determination of SOM by spectrophotometry, increasing functionality. The mass of 500 mg was reduced to 200 mg, generating a mean of 60 % saving of reagents and a decrease of 91 % in the volume of residue generated for the three methods without compromising accuracy and precision. We were able to optimize conditions for the Mebius method and establish the digestion time of maximum recovery of SOM by factorial design and response surface. The methods were validated by the estimate of figures of merits. Between the methods investigated, the optimized Mebius method was best suited for determining SOM, showing near 100 % recovery.
Resumo:
This study aimed to investigate the impact of vegetation burning on the content and chemical composition of soil organic matter (SOM) along a profile of a sandy Acrisol in Southwestern Amazon, Brazil, within 3 years after experiment beginning(YAB).The study was performed in Rio Branco, Acre State, and the forest burning was performed under controlled conditions. Samples from 6 depth(0-100cm depth)were collected under burned forest (BF) and primary forest (PF) at 1 YAB and 3 YAB. Besides Cand N contents, humic substances and biomarkers were determined. Under PF, the C content decreased with depth from 12 to 2 g kg-1.C/N ratio ranged from 7.6 at the surface to values around 3 at 1 m depth, indicating a predominance of microbial products. Humin fraction was not detected in the whole profile. Burning of vegetation promoted an increase of C and of humic acids only at 0-5 cm. The n-alkane distribution showed a shift towards smaller chains in the 0-5 cm of BF, indicating main contribution of microbial products. Also PAH?s of high molecular weight were detected in this site. Vegetation burning imparts alterations on the SOM composition, but these tend to disappear within 3 years.
Resumo:
Equatorial podzols are soils characterized by thick sandy horizons overlying more clayey horizons. Organic matter produced in the topsoil is transferred in depth through the sandy horizons and accumulate at the transition, at a depth varying from 1 to more than 3 m, forming deep horizons rich in organic matter (Bh horizons). Although they cover great surfaces in the equatorial zone, these soils are still poorly known. Studying podzols from Amazonia, we found out that the deep Bh horizons in poorly drained podzol areas have a thickness higher than 1m and store unexpected amounts of carbon. The average for the studied area was 66.7 +/- 5.8 kgCm(-2) for the deep Bh and 86.8 +/- 7.1 kgCm(-2) for the whole profile. Extrapolating to the podzol areas of the whole Amazonian basin has been possible thanks to digital maps, giving an order of magnitude around 13.6 +/- 1.1 PgC, at least 12.3 PgC higher than previous estimates. This assessment should be refined by additional investigations, not only in Amazonia but in all equatorial areas where podzols have been identified. Because of the lack of knowledge on the quality and behaviour of the podzol organic matter, the question of the feedback between the climate and the equatorial podzol carbon cycle is open.
Resumo:
Aquatic humic substances (AHS) isolated from two characteristic seasons of the Negro river, winter and summer corresponding to floody and dry periods, were structurally characterized by (13)C nuclear magnetic ressonance. Subsequently, AHS aqueous solutions were irradiated with a polychromatic lamp (290-475 nm) and monitored by its total organic carbon (TOC) content, ultraviolet-visible (UV-vis) absorbance, fluorescence and Fourier transformed infrared spectroscopy (FTIR). As a result, a photobleaching upto 80% after irradiation of 48 h was observed. Conformational rearrangements and formation of low molecular complexity structures were formed during the irradiation, as deduced from the pH decrement and the fluorescence shifting to lower wavelengths. Additionally a significant mineralization with the formation Of CO(2), CO, and inorganic carbon compounds was registered, as assumed by TOC losses of up to 70%. The differences in photodegradation between samples expressed by photobleaching efficiency were enhanced in the summer sample and related to its elevated aromatic content. Aromatic structures are assumed to have high autosensitization capacity effects mediated by the free radical generation from quinone and phenolic moieties.
Resumo:
Humic substances (HS) from salt marsh soils were characterized and the relationships among HS composition and some geochemical factors were analysed. For this, three salt marshes with the same vegetation cover (Juncus maritimus), but with different geochemical characteristics, were selected. The qualitative characterization of the soil humic acids and fulvic acids was carried out by elemental analysis, FTIR spectroscopy, fluorescence spectroscopy and VACP/MAS (13)C NMR spectroscopy. HS from salt marsh soils under sea rush (Juncus maritimus) displayed some shared characteristics such as low degree of humification, low aromatic content and high proportion of labile compounds, mainly polysaccharides and proteins. However, although the three salt marsh soils under study were covered by the same type of vegetation, the HS showed some important differences. HS composition was found to be determined not only by the nature of the original organic material, but also by environmental factors such as soil texture, redox conditions and tidal influence. In general. an increase in the humification process appeared to be related to aerobic conditions and predominance of sand in the mineral fraction of the soil, while the preservation of labile organic compounds may be associated with low redox potential values and fine soil texture. (C) 2008 Elsevier Ltd. All rights reserved.