990 resultados para Dimensional Accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a clear need to develop fisheries independent methods to quantify individual sizes, density, and three dimensional characteristics of reef fish spawning aggregations for use in population assessments and to provide critical baseline data on reproductive life history of exploited populations. We designed, constructed, calibrated, and applied an underwater stereo-video system to estimate individual sizes and three dimensional (3D) positions of Nassau grouper (Epinephelus striatus) at a spawning aggregation site located on a reef promontory on the western edge of Little Cayman Island, Cayman Islands, BWI, on 23 January 2003. The system consists of two free-running camcorders mounted on a meter-long bar and supported by a SCUBA diver. Paired video “stills” were captured, and nose and tail of individual fish observed in the field of view of both cameras were digitized using image analysis software. Conversion of these two dimensional screen coordinates to 3D coordinates was achieved through a matrix inversion algorithm and calibration data. Our estimate of mean total length (58.5 cm, n = 29) was in close agreement with estimated lengths from a hydroacoustic survey and from direct measures of fish size using visual census techniques. We discovered a possible bias in length measures using the video method, most likely arising from some fish orientations that were not perpendicular with respect to the optical axis of the camera system. We observed 40 individuals occupying a volume of 33.3 m3, resulting in a concentration of 1.2 individuals m–3 with a mean (SD) nearest neighbor distance of 70.0 (29.7) cm. We promote the use of roving diver stereo-videography as a method to assess the size distribution, density, and 3D spatial structure of fish spawning aggregations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The recruitment of vascular stromal and endothelial cells is an early event occurring during cancer cell growth at premetastatic niches, but how the microenvironment created by the initial three-dimensional (3D) growth of cancer cells affects their angiogenesis-stimulating potential is unclear. Methods: The proangiogenic profile of CT26 murine colorectal carcinoma cells was studied in seven-day cultured 3D-spheroids of <300 mu m in diameter, produced by the hanging-drop method to mimic the microenvironment of avascular micrometastases prior to hypoxia occurrence. Results: Spheroid-derived CT26 cells increased vascular endothelial growth factor (VEGF) secretion by 70%, which in turn increased the in vitro migration of primary cultured hepatic sinusoidal endothelium (HSE) cells by 2-fold. More importantly, spheroid-derived CT26 cells increased lymphocyte function associated antigen (LFA)-1-expressing cell fraction by 3-fold; and soluble intercellular adhesion molecule (ICAM)-1, given to spheroid-cultured CT26 cells, further increased VEGF secretion by 90%, via cyclooxygenase (COX)-2-dependent mechanism. Consistent with these findings, CT26 cancer cells significantly increased LFA-1 expression in non-hypoxic avascular micrometastases at their earliest inception within hepatic lobules in vivo; and angiogenesis also markedly increased in both subcutaneous tumors and hepatic metastases produced by spheroid-derived CT26 cells. Conclusion: 3D-growth per se enriched the proangiogenic phenotype of cancer cells growing as multicellular spheroids or as subclinical hepatic micrometastases. The contribution of integrin LFA-1 to VEGF secretion via COX-2 was a micro environmental-related mechanism leading to the pro-angiogenic activation of soluble ICAM-1-activated colorectal carcinoma cells. This mechanism may represent a new target for specific therapeutic strategies designed to block colorectal cancer cell growth at a subclinical micrometastatic stage within the liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of complex boundary conditions on flows are represented by a volume force in the immersed boundary methods. The problem with this representation is that the volume force exhibits non-physical oscillations in moving boundary simulations. A smoothing technique for discrete delta functions has been developed in this paper to suppress the non-physical oscillations in the volume forces. We have found that the non-physical oscillations are mainly due to the fact that the derivatives of the regular discrete delta functions do not satisfy certain moment conditions. It has been shown that the smoothed discrete delta functions constructed in this paper have one-order higher derivative than the regular ones. Moreover, not only the smoothed discrete delta functions satisfy the first two discrete moment conditions, but also their derivatives satisfy one-order higher moment condition than the regular ones. The smoothed discrete delta functions are tested by three test cases: a one-dimensional heat equation with a moving singular force, a two-dimensional flow past an oscillating cylinder, and the vortex-induced vibration of a cylinder. The numerical examples in these cases demonstrate that the smoothed discrete delta functions can effectively suppress the non-physical oscillations in the volume forces and improve the accuracy of the immersed boundary method with direct forcing in moving boundary simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate the adhesive contact between a rigid cylinder of radius R and a graded elastic half-space with a Young's modulus varying with depth according to a power-law, E = E-0(y/c(0))(k) (0 < k < 1), while the Poisson's ratio v remains constant. The results show that, for a given value of ratio R/C-0, a critical value of k exists at which the pull-off force attains a maximum; for a fixed value of k, the larger the ratio R/c(0), the larger the pull-off force is. For Gibson materials (i.e., k = 1 and v = 0.5), closed-form analytical solutions can be obtained for the critical contact half-width at pull-off and pull-off force. We further discuss the perfect stick case with both externally normal and tangential loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Hertz and JKR theories, parabolic assumptions for the rounded profiles of the sphere or cylinder are adopted under the condition that the contact radius (width) should be very small compared to the radius of the sphere or cylinder. However, a large contact radius (width) is often found in experiments even under a zero external loading. We aim at extending the plane strain JKR theory to the case with a large contact width. The relation between the external loading and the contact width is given. Solutions for the Hertz, JKR and rounded-profile cases are compared and analyzed. It is found that when the ratio of a/R is approximately larger than about 0.4, the parabolic assumptions in the Hertz and JKR theories are no longer valid and the exact rounded profile function should be used.