985 resultados para Differential Display Pcr
Resumo:
Agricultural practices, such as spreading liquid manure or the utilisation of land as animal pastures, can result in faecal contamination of water resources. Rhodococcus coprophilus is used in microbial source tracking to indicate animal faecal contamination in water. Methods previously described for detecting of R. coprophilus in water were neither sensitive nor specific. Therefore, the aim of this study was to design and validate a new quantitative polymerase chain reaction (qPCR) to improve the detection of R. coprophilus in water. The new PCR assay was based on the R. coprophilus 16S rRNA gene. The validation showed that the new approach was specific and sensitive for deoxyribunucleic acid from target host species. Compared with other PCR assays tested in this study, the detection limit of the new qPCR was between 1 and 3 log lower. The method, including a filtration step, was further validated and successfully used in a field investigation in Switzerland. Our work demonstrated that the new detection method is sensitive and robust to detect R. coprophilus in surface and spring water. Compared with PCR assays that are available in the literature or to the culture-dependent method, the new molecular approach improves the detection of R. coprophilus.
Resumo:
Contexte: Le nombre de teignes du cuir chevelu et de la peau glabre étant en nette augmentation, l'identification du pathogène qui est indispensable pour un traitement ciblé, a, par conséquence, un grand intérêt pour la santé publique. Dans divers cas, un animal de compagnie peut être identifié en tant que source du pathogène. La fréquence de cultures restant stériles est particulièrement élevée en cas de prétraitement antifongique. Objectif: Le but de ce travail est de mettre au point une méthode rapide d'identification du dermatophyte pathogène in situ par PCR/séquençage dans les cas de teignes du cuir chevelu et/ou de la peau glabre. Matériel et méthodes : De l'ADN a été extrait de squames (N=5) et cheveux (N=21) dont l'examen direct démontrait une infection fongique (N=26) ou se révèlait négatif (N=1). Ensuite, une première PCR du segment 28s de l'ADN ribosomale fongique a été effectuée, suivie par une PCR nichée intérieure à ce segment. L'amplicon a été séquencé et le champignon est identifié par alignement. Résultats : Seule la PCR enchainée a permis d'obtenir une quantité suffisante d'amplicon pour permettre le séquençage. Dans 4 cas sur 5 de tinea pedis, 10 sur 12 de tinea glabra, respectivement 4 sur 4 de tinea capitis, dans lesquels un dermato- phyte a été identifié en culture, le même dermatophyte a été identifié par PCR/séquençage. Une fois sur 27 prélèvements, un autre dermatophyte a été identifié par PCR/séquençage. Ce résultat pourrait être dû à une fausse identification du champignon en culture. Dans un cas de tinea pedis et un cas de tinea corporis, la culture est restée stérile, mais un dermatophyte a pu être identifié par PCR et séquençage. Conclusions : La méthode décrite est à la fois rapide (24 h au lieu de deux semaines pour la culture), sensible et très spécifique. Elle est particulièrement utile dans les cas de teigne du cuir chevelu, dans lesquels le traitement est différent selon l'espèce de dermatophyte et où il s'agit d'un traitement systémique lourd, souvent chez l'enfant.
Resumo:
The objective of this work was to validate, by quantitative PCR in real time (RT-qPCR), genes to be used as reference in studies of gene expression in soybean in drought-stressed trials. Four genes commonly used in soybean were evaluated: Gmβ-actin, GmGAPDH, GmLectin and GmRNAr18S. Total RNA was extracted from six samples: three from roots in a hydroponic system with different drought intensities (0, 25, 50, 75 and 100 minutes of water stress), and three from leaves of plants grown in sand with different soil moistures (15, 5 and 2.5% gravimetric humidity). The raw cycle threshold (Ct) data were analyzed, and the efficiency of each primer was calculated for an overall analysis of the Ct range among the different samples. The GeNorm application was used to evaluate the best reference gene, according to its stability. The GmGAPDH was the least stable gene, with the highest mean values of expression stability (M), and the most stable genes, with the lowest M values, were the Gmβ-actin and GmRNAr18S, when both root and leaves samples were tested. These genes can be used in RT-qPCR as reference gene for expression analysis.
Resumo:
Leukocoria in infants is always a danger signal as retinoblastoma, a malignant retinal tumor, is responsible for half of the cases in this age group. More common signs should also be considered suspicious until proved otherwise, such as strabismus, the second most frequent sign of retinoblastoma. Less frequent manifestations are inflammatory conditions resistant to treatment, hypopyon, orbital cellulitis, hyphema or heterochromia. Other causal pathologies, including persistent hyperplastic primary vitreous (PHPV), Coats' disease, ocular toxocariasis or retinopathy of prematurity, may also manifest the same warning signs and require specialized differential diagnosis. Members of the immediate family circle are most likely to notice the first signs, the general practitioner, pediatrician or general ophthalmologist the first to be consulted. On their attitude will depend the final outcome of this vision and life-threatening disease. Early diagnosis is vital.
Resumo:
Estradiol and progesterone are crucial for the acquisition of receptivity and the change in transcriptional activity of target genes in the implantation window. The aim of this study was to differentiate the regulation of genes in the endometrium of patients with recurrent implantation failure (IF) versus those who became pregnant after in vitro fertilization (IVF) treatment. Moreover, the effect of embryo-derived factors on endometrial transcriptional activity was studied. Nine women with known IVF outcome (IF, M, miscarriage, OP, ongoing pregnancy) and undergoing hysteroscopy with endometrial biopsy were enrolled. Biopsies were taken during the midluteal phase. After culture in the presence of embryo-conditioned IVF media, total RNA was extracted and submitted to reverse transcription, target cDNA synthesis, biotin labelling, fragmentation and hybridization using the Affymetrix Human Genome U133A 2.0 Chip. Differential expression of selected genes was re-analysed by quantitative PCR, in which the results were calculated as threshold cycle differences between the groups and normalized to Glyceraldehyde phosphate dehydrogenase and beta-actin. Differences were seen for several genes from endometrial tissue between the IF and the pregnancy groups, and when comparing OP with M, 1875 up- and 1807 down-regulated genes were returned. Real-time PCR analysis confirmed up-regulation for somatostatin, PLAP-2, mucin 4 and CD163, and down-regulation of glycodelin, IL-24, CD69, leukaemia inhibitory factor and prolactin receptor between Op and M. When the different embryo-conditioned media were compared, no significant differential regulation could be demonstrated. Although microarray profiling may currently not be sensitive enough for studying the effects of embryo-derived factors on the endometrium, the observed differences in gene expression between M and OP suggest that it will become an interesting tool for the identification of fertility-relevant markers produced by the endometrium.
Resumo:
Molecular diagnosis using real-time polymerase chain reaction (PCR) may allow earlier diagnosis of rickettsiosis. We developed a duplex real-time PCR that amplifies (1) DNA of any rickettsial species and (2) DNA of both typhus group rickettsia, that is, Rickettsia prowazekii and Rickettsia typhi. Primers and probes were selected to amplify a segment of the 16S rRNA gene of Rickettsia spp. for the pan-rickettsial PCR and the citrate synthase gene (gltA) for the typhus group rickettsia PCR. Analytical sensitivity was 10 copies of control plasmid DNA per reaction. No cross-amplification was observed when testing human DNA and 22 pathogens or skin commensals. Real-time PCR was applied to 16 clinical samples. Rickettsial DNA was detected in the skin biopsies of three patients. In one patient with severe murine typhus, the typhus group PCR was positive in a skin biopsy from a petechial lesion and seroconversion was later documented. The two other patients with negative typhus group PCR suffered from Mediterranean and African spotted fever, respectively; in both cases, skin biopsy was performed on the eschar. Our duplex real-time PCR showed a good analytical sensitivity and specificity, allowing early diagnosis of rickettsiosis among three patients, and recognition of typhus in one of them.
Resumo:
Although dermatophytes are the most common agents of superficial mycoses in humans and animals, the molecular basis of the pathogenicity of these fungi is largely unknown. In vitro digestion of keratin by dermatophytes is associated with the secretion of multiple proteases, which are assumed to be responsible for their particular specialization to colonize and degrade keratinized host structures during infection. To investigate the role of individual secreted proteases in dermatophytosis, a guinea pig infection model was established for the zoophilic dermatophyte Arthroderma benhamiae, which causes highly inflammatory cutaneous infections in humans and rodents. By use of a cDNA microarray covering approximately 20-25 % of the A. benhamiae genome and containing sequences of at least 23 protease genes, we revealed a distinct in vivo protease gene expression profile in the fungal cells, which was surprisingly different from the pattern elicited during in vitro growth on keratin. Instead of the major in vitro -expressed proteases, others were activated specifically during infection. These enzymes are therefore suggested to fulfil important functions that are not exclusively associated with the degradation of keratin. Most notably, the gene encoding the serine protease subtilisin 6, which is a known major allergen in the related dermatophyte Trichophyton rubrum and putatively linked to host inflammation, was found to be the most strongly upregulated gene during infection. In addition, our approach identified other candidate pathogenicity-related factors in A. benhamiae, such as genes encoding key enzymes of the glyoxylate cycle and an opsin-related protein. Our work provides what we believe to be the first broad-scale gene expression profile in human pathogenic dermatophytes during infection, and points to putative virulence-associated mechanisms that make these micro-organisms the most successful aetiological agents of superficial mycoses.
Resumo:
The objective of this work was to identify genes that could be used as suitable markers for molecular recognition of phenological stages during coffee (Coffea arabica) fruit development. Four cultivars were evaluated as to their differential expression of genes associated to fruit development and maturation processes. Gene expression was characterized by both semi-quantitative and quantitative RT-PCR, in fruit harvested at seven different developmental stages, during three different seasons. No size polymorphisms or differential expression were observed among the cultivars for the evaluated genes; however, distinct expression profiles along fruit development were determined for each gene. Four out of the 28 evaluated genes exhibited a regular expression profile in all cultivars and harvest seasons, and, therefore, they were validated as candidate phenological markers of coffee fruit. The gene α-galactosidase can be used as a marker of green stage, caffeine synthase as a marker of transition to green and yellowish-green stages, and isocitrate lyase and ethylene receptor 3 as markers of late maturation.
Resumo:
Embryonic stem (ES) cells-derived cardiomyocytes represent an attractive source of cells in cell replacement therapies for heart disease. However, controlled cardiogenic differentiation of ES cells requires a complete understanding of the complex molecular mechanisms regulating the differentiation process. We have previously shown that differentiation of ES cells into cardiomyocytes is favored by inactivation of the Notch 1 receptor pathway. In the present study, we therefore compared two ES cell lines, one with normal Notchl expression and one carrying deleted Notchl receptor alleles (Notchl-deleted ES cells) in order to identify genes responsible for the increased propensity of Notchl-deleted ES cells to produce cardiomyocytes. Using RNA-sequencing, we found approximately 300 coding and noncoding transcripts, which are differently expressed in undifferentiated Notchl-deleted ES cells. Since accumulating evidences indicate that long noncoding RNAs (IncRNAs) play important roles in ES cell pluripotency and differentiation, we focused our analysis on modulated IncRNAs. In particular, two IncRNAs, named here lnc 1230 and lnc 1335, are highly induced in the absence of Notchl receptor expression. These represent therefore prime candidates that could favor cardiogenic commitment in undifferentiated ES cells. Indeed, we demonstrate that forced expression of these two IncRNAs in wild-type ES cells result in a significant increase of the number of cardiac progenitor cells and cardiomyocytes in the differentiated progeny of these ES cells. Furthermore, we also identify several microRNAs that are differentially modulated in absence of Notchl expression. Among these are miR-142-5p and miR- 381-3p. Interestingly, both lncl230 and lncl335 are targets of these two microRNAs. Altogether, these data suggest that Notchl-dependent noncoding gene networks, implicating microRNAs and IncRNAs, control embryonic stem cell commitment into the mesodermal and cardiac lineages already at the undifferentiated state. - Les cardiomyocytes issus cellules souches embryonnaires sont une source très prometteuse pour les thérapies cellulaire de remplacement dans le cadre des maladies cardiaques. Cependant, l'utilisation de telles cellules requiert une compréhension poussée des mécanismes moléculaire régulant la différenciation. Nous avons par le passé démontré que la différenciation des cellules souches embryonnaires en cardiomyocytes est favorisée par l'inactivation de la voie d'activation intracellulaire dépendante du récepteur Notch 1. Nous avons donc comparé deux lignées de cellules souches embryonnaires, une présentant une voie d'activation Notchl normale et une chez laquelle les allèles codant pour le récepteur Notchl avaient été invalidés, de façon à identifier les gènes impliqués dans la capacité augmentée des cellules déficientes à produire des cardiomyocytes. En utilisant du séquençage d'ARN à haut débit, nous avons trouvé environ 300 gènes différemment exprimés dans les cellules déficientes pour Notchl. Par ailleurs, des évidences de plus en plus nombreuses suggèrent qu'une nouvelle classe de molécules appelée « long noncoding RNAs » joue un rôle prépondérant dans la maintenance de l'état non différencié et de la capacité de différenciation des cellules souches embryonnaires. Nous avons trouvé que plusieurs « long noncoding RNAs » étaient modulés en l'absence de Notchl, et en particulier deux molécules que nous avons appelées lncl230 et lncl335. Ces derniers représentent des candidats potentiels devant permettre de favoriser la production de cardiomyocytes. Nous avons en effet démontré que la surexpression de ces deux candidats dans des cellules souches embryonnaires résultait en une surproduction de cardiomyocytes. De plus, nous avons également identifié plusieurs microRNAs dont l'expression était modulée dans les cellules souches embryonnaires déficientes dans la voie Notchl. De façon intéressante, parmi ces microRNAs, le miR-142-5p et le miR-381-3p sont capables de cibler lncl230 and lncl335. Dans l'ensemble, ces résultats indiquent donc que des réseaux d'interaction dépendant de la voie d'activation Notch 1 et impliquant des ARNs non codant existent dans les cellules souches embryonnaires pour réguler leur différenciation en différent types cellulaires spécifiques.
Resumo:
We present the application of a real-time quantitative PCR assay, previously developed to measure relative telomere length in humans and mice, to two bird species, the zebra finch Taeniopygia guttata and the Alpine swift Apus melba. This technique is based on the PCR amplification of telomeric (TTAGGG)(n) sequences using specific oligonucleotide primers. Relative telomere length is expressed as the ratio (T/S) of telomere repeat copy number (T) to control single gene copy number (S). This method is particularly useful for comparisons of individuals within species, or where the same individuals are followed longitudinally. We used glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a single control gene. In both species, we validated our PCR measurements of relative telomere length against absolute measurements of telomere length determined by the conventional method of quantifying telomere terminal restriction fragment (TRF) lengths using both the traditional Southern blot analysis (Alpine swifts) and in gel hybridization (zebra finches). As found in humans and mice, telomere lengths in the same sample measured by TRF and PCR were well correlated in both the Alpine swift and the zebra finch.. Hence, this PCR assay for measurement of bird telomeres, which is fast and requires only small amounts of genomic DNA, should open new avenues in the study of environmental factors influencing variation in telomere length, and how this variation translates into variation in cellular and whole organism senescence.
Resumo:
O objetivo deste trabalho foi identificar e caracterizar molecularmente os alelos-S de cultivares de ameixeira japonesa e verificar a compatibilidade gametofítica entre estes. Foram utilizados dois pares de iniciadores específicos na amplificação dos alelos via PCR, em 18 cultivares: Pluma 7, Gulf Rubi, Blood Plum, Wickson, América, Santa Rosa, Rosa Mineira, Estrela Púrpura, Amarelinha, The First, Harry Pieckstone, Santa Rita, Seleção 16, Seleção A26 (Burbank), Seleção 21, Seleção 19, Methley e Simka. As condições da PCR e as combinações de oligonucleotídeos iniciadores utilizadas permitiram a identificação de alelos-S nas cultivares, bem como a indicação dos polinizadores mais compatíveis. As cultivares América e Santa Rosa, bem como Blood Plum, Wickson, Rosa Mineira, Estrela Púrpura e Seleção 21 apresentam incompatibilidade total entre si, por compartilharem os mesmos alelos.
Resumo:
Phage display is a powerful method of isolating of antibody fragments from highly diverse naive human antibody repertoires. However, the affinity of the selected antibodies is usually low and current methods of affinity maturation are complex and time-consuming. In this paper, we describe an easy way to increase the functional affinity (avidity) of single chain variable fragments (scFvs) by tetramerization on streptavidin, following their site-specific biotinylation by the enzyme BirA. Expression vectors have been constructed that enable addition of the 15 amino acid biotin acceptor domain (BAD) on selected scFvs. Different domains were cloned at the C-terminus of scFv in the following order: a semi-rigid hinge region (of 16 residues), the BAD, and a histidine tail. Two such recombinant scFvs directed against the carcinoembryonic antigen (CEA) were previously selected from human non-immune and murine immune phage display libraries. The scFvs were first synthesized in Escherichia coli carrying the plasmid encoding the BirA enzyme, and then purified from the cytoplasmic extracts by Ni-NTA affinity chromatography. Purified biotinylated scFvs were tetramerized on the streptavidin molecule to create a streptabody (StAb). The avidity of various forms of anti-CEA StAbs, tested on purified CEA by competitive assays and surface plasmon resonance showed an increase of more than one log, as compared with the scFv monomer counterparts. Furthermore, the percentage of direct binding of 125I-labeled StAb or monomeric scFv on CEA-Sepharose beads and on CEA-expressing cells showed a dramatic increase for the tetramerized scFv (>80%), as compared with the monomeric scFv (<20%). Interestingly, the percentage binding of 125I-labeled anti-CEA StAbs to CEA-expressing colon carcinoma cells was definitely higher (>80%) than that obtained with a reference high affinity murine anti-CEA mAb (30%). Another advantage of using scFvs in a StAb format was demonstrated by Western blot analysis, where tetramerized anti-CEA scFv could detect a small quantity of CEA at a concentration 100-fold lower than the monomeric scFv.
Resumo:
Spodoptera frugiperda is a pest of great economic importance in the Americas. It is attacked by several species of parasitoids, which act as biological control agents. Parasitoids are morphologically identifiable as adults, but not as larvae. Laboratory rearing conditions are not always optimal to rear out parasitic wasps from S. frugiperda larvae collected from wild populations, and it frequently happens that parasitoids do not complete their life cycle and stop developing at the larval stage. Therefore, we explored ways to identify parasitoid larvae using molecular techniques. Sequencing is one possible technique, yet it is expensive. Here we present an alternate, cheaper way of identifying seven species of parasitoids (Cotesia marginiventris, Campoletis sonorensis, Pristomerus spinator, Chelonus insularis, Chelonus cautus, Eiphosoma vitticolle and Meteorus laphygmae) using PCR amplification of COI gene followed by a digestion with a combination of four restriction endonucleases. Each species was found to exhibit a specific pattern when the amplification product was run on an agarose gel. Identifying larvae revealed that conclusions on species composition of a population of parasitic wasps can be biased if only the emerging adults are taken into account.