997 resultados para Deep architecture
Resumo:
The vertical structure of the relationship between water vapor and precipitation is analyzed in 5 yr of radiosonde and precipitation gauge data from the Nauru Atmospheric Radiation Measurement (ARM) site. The first vertical principal component of specific humidity is very highly correlated with column water vapor (CWV) and has a maximum of both total and fractional variance captured in the lower free troposphere (around 800 hPa). Moisture profiles conditionally averaged on precipitation show a strong association between rainfall and moisture variability in the free troposphere and little boundary layer variability. A sharp pickup in precipitation occurs near a critical value of CWV, confirming satellite-based studies. A lag–lead analysis suggests it is unlikely that the increase in water vapor is just a result of the falling precipitation. To investigate mechanisms for the CWV–precipitation relationship, entraining plume buoyancy is examined in sonde data and simplified cases. For several different mixing schemes, higher CWV results in progressively greater plume buoyancies, particularly in the upper troposphere, indicating conditions favorable for deep convection. All other things being equal, higher values of lower-tropospheric humidity, via entrainment, play a major role in this buoyancy increase. A small but significant increase in subcloud layer moisture with increasing CWV also contributes to buoyancy. Entrainment coefficients inversely proportional to distance from the surface, associated with mass flux increase through a deep lower-tropospheric layer, appear promising. These yield a relatively even weighting through the lower troposphere for the contribution of environmental water vapor to midtropospheric buoyancy, explaining the association of CWV and buoyancy available for deep convection.
Resumo:
Human-like computer interaction systems requires far more than just simple speech input/output. Such a system should communicate with the user verbally, using a conversational style language. It should be aware of its surroundings and use this context for any decisions it makes. As a synthetic character, it should have a computer generated human-like appearance. This, in turn, should be used to convey emotions, expressions and gestures. Finally, and perhaps most important of all, the system should interact with the user in real time, in a fluent and believable manner.
Resumo:
This investigation moves beyond the traditional studies of word reading to identify how the production complexity of words affects reading accuracy in an individual with deep dyslexia (JO). We examined JO’s ability to read words aloud while manipulating both the production complexity of the words and the semantic context. The classification of words as either phonetically simple or complex was based on the Index of Phonetic Complexity. The semantic context was varied using a semantic blocking paradigm (i.e., semantically blocked and unblocked conditions). In the semantically blocked condition words were grouped by semantic categories (e.g., table, sit, seat, couch,), whereas in the unblocked condition the same words were presented in a random order. JO’s performance on reading aloud was also compared to her performance on a repetition task using the same items. Results revealed a strong interaction between word complexity and semantic blocking for reading aloud but not for repetition. JO produced the greatest number of errors for phonetically complex words in semantically blocked condition. This interaction suggests that semantic processes are constrained by output production processes which are exaggerated when derived from visual rather than auditory targets. This complex relationship between orthographic, semantic, and phonetic processes highlights the need for word recognition models to explicitly account for production processes.