959 resultados para Damping oscillation
Resumo:
The discovery of the spatial uniform coexistence of superconductivity and ferromagnetism in ruthenocuprates, RuSr2GdCu2O8 (Ru-1212), has spurred an extraordinary development in the study of the competition between magnetism and superconductivity. However, several points of their preparation process and characterization that determine their superconductive behaviour are still obscure. The improvement of sample preparation conditions involves some thermal treatments in inert atmosphere. Anelastic spectroscopy measurements were made using an inverted torsion pendulum, operating with an oscillation frequency of 38 Hz, temperature in the 90 and 310 K range, heating rate of 1 K/min, and vacuum better than 10(-3) Pa. The results show anelastic relaxation peaks at 210 K related to the presence of interstitial oxygen atoms. The peaks decrease significantly with the oxygen loss caused by the heat treatments in vacuum, appearing again after the annealing of the sample in an oxygen atmosphere. These observed peaks are clearly related to the additional oxygen atoms, with activation energy 0.13 and 0.36 eV, and can be explained in terms by diffusional jumps of interstitial oxygen in the RuO2 planes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Ti and its alloys have been used thoroughly in the production of prostheses and dental implants due to their properties, such as high corrosion resistance, low elasticity modulus and high mechanical strength/density relation. Among the Ti-based alloys, the Ti-35Nb-7Zr-5Ta (TNZT) is one that presents the smallest elasticity modulus, making it an excellent alternative to be used as a biomaterial. In this paper, mechanical spectroscopy measurements were made in TNZT alloys containing several quantities of oxygen and nitrogen in solid solution. Mechanical spectroscopy measurements were made by using a torsion pendulum, operating at an oscillation frequency in the interval 4-30 Hz, temperature in the range 100-700 K, heating rate of about 1 K/min and vacuum lower than 10(-5) Torr. Complex relaxation structures and a reduction in the elasticity modulus were observed for the heat-treated and doped samples. The observed peaks were associated with the interactions of interstitial atoms and the alloy elements. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The scientific and technological development in the area of new materials contributed to several applications of niobium and its alloys in nuclear power plants as well as in aerospace, aeronautics, automobile and naval industries. This paper presents the interstitial diffusion coefficients of nitrogen in solid solution in the Nb-1.0wt%Zr alloy using internal friction measurements obtained by mechanical spectroscopy, which uses a torsion pendulum operating at an oscillation frequency between 1.0 Hz and 10.0 Hz. The temperature range varies from 300K to 700K, at a heating rate of 1 K/min and vacuum better than 2 x 10(-6) Torr. The results showed an increase of the interstitial diffusion coefficient of nitrogen that was correlated with configurational considerations for the octahedral interstitials.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coherent properties and Rabi oscillations in two-level donor systems, under terahertz excitation, are theoretically investigated. Here we are concerned with donor states in bulk GaAs and GaAs-(Ga,Al)As quantum dots. We study confinement effects, in the presence of an applied magnetic field, on the electronic and on-center donor states in GaAs- (Ga,Al)As dots, as compared to the situation in bulk GaAs, and estimate some of the associated decay rate parameters. Using the optical Bloch equations with damping, we study the time evolution of the Is and 2p(+) states in the presence of an applied magnetic field and of a terahertz laser. We also discuss the role played by the distinct dephasing rates on the photocurrent and calculate the electric dipole transition moment. Results indicate that the Rabi oscillations are more robust as the total dephasing rate diminishes, corresponding to a favorable coherence time.
Resumo:
Brain oscillation are not completely independent, but able to interact with each other through cross-frequency coupling (CFC) in at least four different ways: power-to-power, phase-to-phase, phase-to-frequency and phase-to-power. Recent evidence suggests that not only the rhythms per se, but also their interactions are involved in the execution of cognitive tasks, mainly those requiring selective attention, information flow and memory consolidation. It was recently proposed that fast gamma oscillations (60 150 Hz) convey spatial information from the medial entorhinal cortex to the CA1 region of the hippocampus by means of theta (4-12 Hz) phase coupling. Despite these findings, however, little is known about general characteristics of CFCs in several brain regions. In this work we recorded local field potentials using multielectrode arrays aimed at the CA1 region of the dorsal hippocampus for chronic recording. Cross-frequency coupling was evaluated by using comodulogram analysis, a CFC tool recently developted (Tort et al. 2008, Tort et al. 2010). All data analyses were performed using MATLAB (MathWorks Inc). Here we describe two functionally distinct oscillations within the fast gamma frequency range, both coupled to the theta rhythm during active exploration and REM sleep: an oscillation with peak activity at ~80 Hz, and a faster oscillation centered at ~140 Hz. The two oscillations are differentially modulated by the phase of theta depending on the CA1 layer; theta-80 Hz coupling is strongest at stratum lacunosum-moleculare, while theta-140 Hz coupling is strongest at stratum oriens-alveus. This laminar profile suggests that the ~80 Hz oscillation originates from entorhinal cortex inputs to deeper CA1 layers, while the ~140 Hz oscillation reflects CA1 activity in superficial layers. We further show that the ~140 Hz oscillation differs from sharp-wave associated ripple oscillations in several key characteristics. Our results demonstrate the existence of novel theta-associated high-frequency oscillations, and suggest a redefinition of fast gamma oscillations
Resumo:
Processing in the visual system starts in the retina. Its complex network of cells with different properties enables for parallel encoding and transmission of visual information to the lateral geniculate nucleus (LGN) and to the cortex. In the retina, it has been shown that responses are often accompanied by fast synchronous oscillations (30 - 90 Hz) in a stimulus-dependent manner. Studies in the frog, rabbit, cat and monkey, have shown strong oscillatory responses to large stimuli which probably encode global stimulus properties, such as size and continuity (Neuenschwander and Singer, 1996; Ishikane et al., 2005). Moreover, simultaneous recordings from different levels in the visual system have demonstrated that the oscillatory patterning of retinal ganglion cell responses are transmitted to the cortex via the LGN (Castelo-Branco et al., 1998). Overall these results suggest that feedforward synchronous oscillations contribute to visual encoding. In the present study on the LGN of the anesthetized cat, we further investigate the role of retinal oscillations in visual processing by applying complex stimuli, such as natural visual scenes, light spots of varying size and contrast, and flickering checkerboards. This is a necessary step for understanding encoding mechanisms in more naturalistic conditions, as currently most data on retinal oscillations have been limited to simple, flashed and stationary stimuli. Correlation analysis of spiking responses confirmed previous results showing that oscillatory responses in the retina (observed here from the LGN responses) largely depend on the size and stationarity of the stimulus. For natural scenes (gray-level and binary movies) oscillations appeared only for brief moments probably when receptive fields were dominated by large continuous, flat-contrast surfaces. Moreover, oscillatory responses to a circle stimulus could be broken with an annular mask indicating that synchronization arises from relatively local interactions among populations of activated cells in the retina. A surprising finding in this study was that retinal oscillations are highly dependent on halothane anesthesia levels. In the absence of halothane, oscillatory activity vanished independent of the characteristics of the stimuli. The same results were obtained for isoflurane, which has similar pharmacological properties. These new and unexpected findings question whether feedfoward oscillations in the early visual system are simply due to an imbalance between excitation and inhibition in the retinal networks generated by the halogenated anesthetics. Further studies in awake behaving animals are necessary to extend these conclusions
Resumo:
The industry's interest in having a greater control of the deformations caused by welding is due to the geometric and dimensional tolerances been more and more precise in the project specifications, motivating the manufacturing engineering to develop stable processes and to ensure routine production. Aiming at it, the main goal of this present work is to analyze how much routine situations used in automatic aluminum welding can influence on the angular deformations of this material. Using the alloy AA 5052 H34, and the automatic welding in pulsed GMAW process, three types of weaving were applied throughout the length of the weld, in butt joints assembled without groove and with 60 degrees single-V-groove, arranged transversely as well as longitudinally to the rolling direction of the plate. The measurement of the deformations was made by a three-dimensional equipment, before and after the welding, in three distinct regions in the specimens. The profile of the weld bead was the main factor for the different types of deformations found, as revealed by macrographical analysis. The 60 degrees single-V-groove had higher amplitudes of deformations as the joint without groove. The torch oscillation wasn't a variable of statistically significant influence on this amplitudes.
Resumo:
During the construction of five residential buildings in the city of Taubate, State of São Paulo, it was possible to carry out one comprehensive investigation of the behavior of precast concrete piles in clay shales. This paper describes the results of Dynamic Load Tests (DLT's) executed in three piles with different diameters and with the same embedded length. The tests were monitored using the PDA(R) (Pile Driving Analyzer) and the pile top displacement was measured by pencil and paper procedure. From the curves of RMX versus DMX resulted from CASE(R) method, CAPWAPC(R) analyses were made for signals where the maximum mobilized soil resistance was verified. The results were compared with the predicted bearing capacity using the semi-empirical method of Decourt & Quaresma (1978) and Decourt (1982) based on SPT values and the description of the soil profile. Some comments related to the values of quake and damping used for clay shales in the analyses are also presented.
Resumo:
The effects of combustion driven acoustic oscillations in carbon monoxide and nitrogen oxides emission rates of a combustor operated with liquefied petroleum gas (LPG) were investigated. Because the fuel does not contain nitrogen, tests were also conducted with ammonia injected in the fuel, in order to study the formation of fuel NOx. The main conclusions were: (a) the pulsating combustion process is more efficient than the non-pulsating one and (b) the pulsating combustion process generates higher rates of NOx, with and without ammonia injection, as shown by CO and NO concentrations as function of the O-2 concentration. An increase in the LPG flow rate, keeping constant the air to fuel ratio, increased the acoustic pressure amplitude and the frequency of oscillation. The injection of ammonia had no influence on either pressure amplitude or frequency. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We study the collider phenomenology of bilinear R-parity violating supergravity, the simplest effective model for supersymmetric neutrino masses accounting for the current neutrino oscillation data. At the CERN Large Hadron Collider the center-of-mass energy will be high enough to probe directly these models through the search for the superpartners of the Standard Model (SM) particles. We analyze the impact of R-parity violation on the canonical supersymmetry searches-that is, we examine how the decay of the lightest supersymmetric particle (LSP) via bilinear R-parity violating interactions degrades the average expected missing momentum of the reactions and show how this diminishes the reach in the usual channels for supersymmetry searches. However, the R-parity violating interactions lead to an enhancement of the final states containing isolated same-sign di-leptons and trileptons, compensating the reach loss in the fully inclusive channel. We show how the searches for displaced vertices associated to LSP decay substantially increase the coverage in supergravity parameter space, giving the corresponding reaches for two reference luminosities of 10 and 100 fb(-1) and compare with those of the R-parity conserving minimal supergravity model.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)