986 resultados para DOUBLE-MUTANT CYCLES
Resumo:
Sr2Fe1-xZnxNbO6-x/2 (0 <= x <= 0.5) and Sr2Fe1-xCuxNbO6-x/2 (0.01 <= x <= 0.05) with the double perovskite structure have been synthesized. The crystal structures at room temperature were determined from Rietveld refinements of X-ray powder diffraction data. The plots of the imaginary parts of the impedance spectrum, Z '', and the electric modulus, M '', versus log (frequency), possess maxima for both curves separated by less than a half decade in frequency with associated capacities of 2 nF. The enhancement of the overall conductivity Of Sr2Fe1-xMxNbO6-x/2 (M = Cu and Zn) is observed, as increases from 2.48 (3) x 10(-4) S/cm for Sr2FeNbO6 to 3.82 (5) x 10(-3) S/cm for Sr2Fe0.8Zn0.2NbO5.9 at 673 K. Sr2Fe0.8Zn0.2NbO5.9 is chemically stable under the oxygen partial pressure from 1 atm to 10(-22) atm at 873 K. The p and n-type electronic conductions are dominant under oxidizing and reducing conditions, respectively, suggesting a small-polaron hopping mechanism of electronic conduction.
Resumo:
Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y2O3 + ZrO2) and lanthanum zirconate (LZ, La2Zr2O7) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 degrees C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 mu m have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 mu m, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 mu m, the failure mainly occurs at the interface of the YSZ layer and the bond coat.
Resumo:
The single-phase double perovskites Sr2MWO6 (M=Co, Ni) were prepared by sol-gel method. Crystal Structure, magnetic properties and the morphology of Sr2CoWO6 and Sr2NiWO6 were investigated. X-ray powder diffraction (XRD) analysis shows single phase structure for Sr2MWO6 (M=Co, Ni) without any traces of impurities and the crystal structure of all the samples belongs to the tetragonal I4/m space group. SEM image for Sr2MWO6 (M=Co, Ni) indicate that the grains are homogeneous and connect each other very well. The Neel temperature for Sr2CoWO6 and Sr2NiWO6 are 23 K and 59 K, respectively. Magnetic measurements showed that the magnetic moment in these double perovskites originates mainly from the interactions between Ni ions and Co ions.
Resumo:
A multilayer white organic light-emitting diode (OLED) with high efficiency was present. The luminescent layer was composed of a red dye 4-(dicyanomethylene)-2-t-butyle-6-(1,1,7,7-tetra-methyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped into NN-bis-(1-naphthyl)-N,N-diphenyl-1,1-biphenyl-4-4-diamine (NPB) layer and a blue-emitting 9,10-bis-(beta-naphthyl)-anthrene (DNA) layer. Red and blue emission, respectively, from DCJTB:NPB and DNA can be obtained by effectively controlling the thicknesses of DCJTB:NPB and DNA layers, thus a stable white light emission was achieved. The device turned on at 3.5 V, and the maximum luminance reached 16000 cd/m(2) at 21 V. The maximum current efficiency and power efficiency were 13.6 cd/A and 5.5 lm/W, respectively.
Resumo:
An asymmetrical double Schiff-base Cu(II) mononuclear complex, HCuLp (H(3)Lp is N-3-carboxylsalicylidene-N'-5-chlorosalicylaldehyde-1,3-diaminopropane) and a heterometal trinuclear complex with double molecular structure (CuLp)(2)Co center dot 5H(2)O have been synthesized and characterized by means of elemental analyses, IR and electronic spectra. The crystal structure of the heterotrinucler complex was determined by X-ray analysis. Each asymmetric unit within the unit cell of the complex contains two heterotrinuclear neutral molecules (a) [CuLpCoCuLp], (b) [(CuLpH(2)O) CoCuLp] and four uncoordinated water molecules. In the two neutral molecules, the central Co2+ ions are located at the site of O-6 with a distorted octahedral geometry, one terminal Cu2+ ion (Cu(3)) at the square-pyramidal environment of N2O3, and the other three at the square planar coordination geometry with N2O2 donor atoms. Magnetic properties of the heterotrinucler complex have been determined in the temperature range 5-300 K, indicating that the interaction between the central Co2+ ion and the outer Co2+ ions is antiferromagnetic.
Resumo:
The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2-xLaxMnMoO6(0 <= x <= 1). The compounds have a monoclinic structure (space group P2(1)/n) and the cell volume expands monotonically with La doping. The T-C and the magnetic moment rise and the cusp-like transition temperature below which the magnetic frustration occurs shifts to high temperature as x increases. With La doping, electrical resistivity of Sr2-xLaxMnMoO6 decreases only at low doping levels (x <= 0.2); while at high doping levels (0.8 <= x <= 1), electrical resistivity tends to increase greatly. The results suggest that the competition between band filling effect and steric effect coexists in the whole doping range, and the formation of ferrimagnetic interactions is not simply at the expense of antiferromagnetic interactions.
Resumo:
Organic thin film transistors based on pentacene are fabricated by the method of full evaporation. The thickness of insulator film can be controlled accurately, which influences the device operation voltage markedly. Compared to the devices with a single-insulator layer, the electric performance of devices by using a double-insulator as the gate dielectric has good improvement. It is found that the gate leakage current can be reduced over one order of magnitude, and the on-state current can be enhanced over one order of magnitude. The devices with double-insulator layer exhibit field-effect mobility as large as 0.14 cm(2)/Vs and near the zero threshold voltage. The results demonstrate that using proper double insulator as the gate dielectrics is an effective method to fabricate OTFTs with high electrical performance.
Resumo:
Investigation of a heterogeneous electron-transfer (ET) reaction at the water/1,2-dichloroethane interface employing a double-barrel micropipet technique is reported. The chosen system was the reaction between Fe(CN)(6)(3-) in the aqueous phase (W) and ferrocene in 1,2-dichloroethane (DCE). According to the generation and the collection currents as well as collection efficiency, the ET-ion-transfer (IT) coupling process at such an interface and competing reactions with the organic supporting electrolyte in the organic phase can be studied. In addition, this technique has been found to be an efficient method to distinguish and measure the charge-transfer coupling reaction between two ions (IT-IT) processes occurring simultaneously at a liquid/liquid interface. On this basis, the formal Gibbs energies of transfer of some ions across the W/DCE interface, such as NO3-, NO2-, Cl-, COO-, TBA(+), IPAs+, Cs+, Rb+, K+, Na+, and Li+, for which their direct transfers are usually difficult to obtain because of the IT-IT coupling processes, were quantitatively evaluated.
Resumo:
In this paper, the charge transfer across the micro-liquid/liquid interface supported at the orifice of a double-barrel micropipette, namely, a theta-pipette, is reported. Simple ion transfer(TMA(+)), facilitated ion transfer (potassium ion transfer facilitated by DB18C6), and electron transfer (ferrocene and ferri/ferrocyanide system) have been investigated by cyclic voltammetry. The experimental results show that a very thin aqueous film, linking both barrels filled with the aqueous solution and the organic solution respectively, can spontaneously be formed on the outer glass surface of such a double-barrel micropipette to construct a micro-liquid/liquid interface, which provides the asymmetry of diffusion field. Such device is demonstrated experimentally which can be employed as one of the simplest electrochemical cells to investigate the charge transfer across the liquid/liquid interface.
Resumo:
The structural stability and redox properties of yeast iso-1-cytochrome c and its mutant, F82H, were studied by surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Phenylalanine, which exists at the position-82 in yeast iso-1-cytochrome c, is replaced by histidine in the mutant. The SERRS spectra of the proteins on the bare silver electrodes indicate that the mutant possesses a more stable global structure with regard to the adsorption-induced conformational alteration. The redox potential of the mutant negatively shifts by about 400 mV, relative to that of yeast iso-1-cytochrome c. This is ascribed to axial ligand switching and higher solvent accessibility of the heme iron in the mutant during the redox reactions.
Resumo:
Ferrocenebutyrate-intercalated layered double hydroxide (FcLDH) was prepared by the coprecipitation method and characterized by PXRD, FTIR, TEM and elemental analysis. FcLDH nanoparticles in deionized water were deposited onto the surface of graphite powder to yield graphite powder-supported FcLDH, which was subsequently dispersed into methyltrimethoxysilane-derived gels to fabricate surface-renewable, stable, rigid carbon ceramic electrodes containing the electroactive ferrocenyl group. Cyclic voltammetric study revealed that peak currents of the FcLDH-modified electrode were diffusion-con trolled in 0.1 mol l(-1) KCl aqueous solution. In addition, the formal potential of the modified electrode is related to the activity of chloride ion with a Nernst slope of 56 mV per decade.
Resumo:
The principle and technique of double layer capacitance and its application in electrochemical biosensor are briefly reviewed with 50 references. The future development of double layer capacitance biosensor is expected.
Resumo:
The origins of the single- and double-melting endotherms of isotactic polypropylene crystallized at different temperatures were studied carefully by differential scanning calorimetry, wide-angle X-ray diffraction, and small-angle X-ray scattering. The experimental data show that spontaneous crystallization occurs when the crystallization temperature is lower than 117 degrees C; thus the lamellae formed are imperfect. At a lower heating rate, the recrystallization or reorganization of these imperfect lamellae leads to double endotherms. On the other hand, when the crystallization temperature is higher than 136 degrees C, two major kinds of lamellae with different thickness are developed during the isothermal process, which also results in the double-melting endotherms. In the intermediate temperature range the lamellae formed are perfect, and there is only a single peak in the distribution of lamellar thickness. This explains the origin of the single-melting endotherm. (C) 2000 John Wiley & Sons, Inc.
Circular dichroism and resonance Raman comparative studies of wild type cytochrome c and F82H mutant
Resumo:
The UV-visible, circular dichroism (CD), and resonance Raman (RR) spectra of the wild type yeast iso-1-cytochrome c (WT) and its mutant F82H in which phenylalanine-82 (Phe-82) is substituted with His are measured and compared for oxidized and reduced forms. The CD spectra in the intrinsic and Soret spectral region, as well as RR spectra in high, middle, and low frequency regions, are discussed. From the analysis of the spectra, it is determined that in the oxidized F82H the two axial ligands to the heme iron are His-18 and His-82 whereas in the reduced form the sixth ligand switches from His-82 to Met-80 providing the coordination geometry similar to that of WT. Based on the spectroscopic data, the conclusion is that the porphyrin macrocycle is less distorted in the oxidized F82H compared to the oxidized WT. Similar distortions are present in the reduced form of the proteins. Frequency shifts of Raman bands, as well as the decrease of the or-helix content in the CD spectra, indicate more open conformation of the protein around the heme. (C) 2000 John Wiley & Sons, Inc.
Resumo:
In natural and synthetic materials having non-racemic chiral centers, chirality and structural ordering each play a distinct role in the formation of ordered states. Configurational chirality can be extended to morphological chirality when the phase, structures possess low liquid crystalline order. In the crystalline states the crystallization process suppresses the chiral helical morphology due to strong ordering interactions, In this Letter, we report the first observation of helical single lamellar crystals of synthetic non-racemic chiral polymers. Experimental evidence shows that the molecular chains twist along both the long and short axes of the helical lamellar crystals, which is the first time a double-twist molecular orientation in a helical crystal has been observed.