978 resultados para DENSITY FUNCTIONAL METHOD


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the structural stability and electronic properties of ordered perovskite-type compounds Ba2MIrO6 (M = La, Y) by use of density functional theory. Cubic (Fm-3m), rhombohedral (R-3) and monoclinic (P2(1)/n) phases are considered for each compound. It was found that the most energetically stable phase for Ba2YIrO6 and Ba2LaIrO6 is P2(1)/n andR-3, respectively. It is also interesting to find that Ba2YIrO6 in R-3 phase, which was not reported in experiment, has a slightly lower energy than experimentally observed cubic Fm-3m phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural stability and electronic properties of Co2N, Rh2N and Ir2N were Studied by using the first principles based on the density functional theory. Two Structures were considered for each nitride, orthorhombic Pnnm phase and cubic Pa (3) over bar phase. The results show that they are all mechanically stable. Co2N in both phases are thermodynamically stable due to the negative formation energy, while the remaining two compounds are thermodynamically unstable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The elastic anisotropy of the potential low compressible and hard materials OsB2 and RuB2 were studied by first-principles investigation within density functional theory. The structure, elastic constants, bulk modulus, shear modulus, Poisson's ratio and Debye temperature have been calculated within both local density approximation (LDA) and generalized gradient approximation (GGA). The results indicated that the calculated bulk modulus and shear modulus were in good agreement with the experimental and previous theoretical studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four novel diimine rhenium(I) carbonyl complexes with the formula [Re(CO)(3)(L) Br], where L = 2-(4-(9H-carbazol-9-yl) phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (P1), 2-(4-(3,6-di-tert-butyl-9H-carbazol-9-yl) phenyl)-1H-imidazo-[4,5-f][1,10] phenanthroline (P2), 2-(4-(6-(9H-carbazol-9-yl)-9H-3,9'-bicarbazol-9-yl) phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (D1), and 2-(4-(3', 6'-di-tert-butyl-6-(3,6-di-tert-butyl-9H-carbazol-9-yl)-9H-3,9'-bicarbazol-9-yl) phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (D2), have been successfully synthesized and fully characterized by (HNMR)-H-1, IR, and UV-Vis, etc. The luminescence quantum yields (LQYs) of the parent Re(I) complexes P1 and P2 are 0.13 and 0.16, respectively, which are much higher than the previously reported Re(I) dendrimers. The HOMOs and the LUMOs of P1 and P2 are calculated to be mainly composed of [d(Re) + pi(CO + Br)] and pi*(L) orbital, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two bromo rhenium(I) carbonyl complexes with the formula of [Re(CO)(3)(L)Br], where L = 1,10-phenanthroline (Phen-Re) and 5-(1H-pyrrol-1-yl)-1,10-phenanthroline (Pyph-Re), were successfully synthesized with the aim to analyze the effect of the pyrrole (Py) moiety on the photophysical properties of Pyph-Re. It was found that the triplet metal-to-ligand charge-transfer d pi (Re) --> pi*(N-N) emission of Phen-Re and Pyph-Re centered at ca. 527 nm with the luminescence quantum yield (LQY) of 0.015 and ca. 578 nm with the LQY of 0.011, respectively. At the same time, the geometrical structures of the ground state and the absorption spectral properties of Phen-Re and Pyph-Re were also calculated with the 6-31G* basis set employed on C, H, N, O, and Br atoms, and LANL2DZ adopted on Re atom.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The quantum yield, lifetime, and absorption spectrum of four [Ru(bpy)(2)L](+) [where bpy is 2,2'-bipyridyl; L is represented by the deprotonated form of 2-(1H-tetrazol-5-yl)pyridine (L1) or 2-(1H-tetrazol-5-yl)pyrazine (L2)], as well as their methylated complexes [Ru(bpy)(2)LMe](2+) (RuL1Me and RuL2Me) are closely ligand dependent. In this paper, density functional theory (DFT) and time-dependent DFT (TDDFT) were performed to compare the above properties among these complexes. The calculated results reveal that the replacement of pyridine by pyrazine or the attachment of a CH3 group to the tetrazolate ring greatly increases the pi-accepting ability of the ancillary ligands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum-chemistry methods were explored to investigate the electronic structures, injection and transport properties, absorption and phosphorescence mechanism of a series of blue-emitting Ir(III) complexes {[(F-2-ppy)(2)Ir(pta -X/pyN4)], where F-2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = phenyl(1); p-tolyl (2); 2,6-difluororophenyl (3); -CF3 (4), and pyN4 = pyridine-1,2,4-tetrazolate (5)}, which are used as emitters in organic light-emitting diodes (OLEDs). The mobility of hole and electron were studied computationally based on the Marcus theory. Calculations of Ionization potentials (IPs) and electron affinities (EAs) were used to evaluate the injection abilities of holes and electrons into these complexes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a quantum-chemical study of electronic, optical and charge transporting properties of four platinum (II) complexes, pt((CN)-N-Lambda)(2) ((CN)-N-Lambda=phenylpyridine or thiophenepyridine). The lowest-lying absorptions at 442, 440, 447 and 429 nm are all attributed to the mixed transition characters of metal-to-ligand charge transfer (MLCT) and ligand-centered (LC) pi - pi(*) transition. While, unexpectedly, the lowest-lying phosphorescent emissions at 663, 660, 675 and 742 nm are mainly from metal-to-ligand charge transfer ((MLCT)-M-3) ligand-centered (LC) pi ->pi* transition. Ionization potential (IP), electron affinities (EA) and reorganization energy P (lambda(hole/electron)) were obtained to evaluate the charge transfer and balance properties between hole and electron.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic and magnetic properties of tetragonal double perovskite Sr2NiOsO6 were studied by use of the density functional theory and including the spin-orbit coupling. Compensated half-metal is found if the spin-orbit coupling is not considered. Spin-orbit coupling induces orbital moments on both Ni and Os, making Sr2NiOsO6 a near compensated half-metal. Ferromagnetic phase is slightly favored over antiferromagnetic phase (by 4 meV). The small energy difference also suggests that both phases are competitive for the ground state. At ferromagnetic phase, the calculated net magnetic moment is 3.53 mu(B), in good agreement with experimental value of 3.44 mu(B). At antiferromagnetic phase, the net magnetic moment is 0.69 mu(B), in which the contribution from the net spin moment is 0.09 mu(B).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reaction mechanism of Pd(O)-catalyzed allene bis-selenation reactions is investigated by using density functional methods. The overall reaction mechanism has been examined. It is found that with the bulkier PMe3 ligand, the rate-determining step is the reductive elimination process, while allene insertion and reductive elimination processes are competitive for the rate-determining step with the PH3 ligand, indicating the importance of the ligand effect. For both cis and trans palladium complexes, allene insertion into the Pd-Se bond of the trans palladium complex using the internal carbon atom attached to the selenyl group is prefer-red among the four pathways of allene insertion processes. The formation of sigma-allyl and pi-allyl palladium complexes is favored over that of the sigma-vinyl palladium species. By using methylallene, the regioselectivity of monosubstituted allene insertion into the Pd-Se bond is analyzed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The half metallic properties of the recent synthesized Sr2CuOsO6 were predicted by using the density functional theory. The effects of electron correlation and spin-orbit coupling (SOC) were studied. The calculations show that without considering SOC effect, Sr2CuOsO6 is half metallic and ferrimagnetic. By including both electron correlation and spin-orbit coupling, the total spin magnetic moment is 0.89 mu(B), total orbital moment 0.43 mu(B) in opposite direction, making the net magnetic moment 0.46 mu(B). SOC ruins the half metallic character. Crown Copyright (C) 2009 Published by Elsevier B. V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural, electronic, and mechanical properties of ReB and ReC have been studied by use of the density functional theory. For each compound, six structures are considered, i.e., hexagonal WC, NiAs, wurtzite, cubic NaCl, CsCl, and zinc-blende type structures. The results indicate that for ReB and ReC, WC type structure is energetically the most stable among the considered structures, followed by NiAs type structure. ReB-WC (i.e., ReB in WC type structure) and ReB-NiAs are both thermodynamically and mechanically stable. ReC-WC and ReC-NiAs are mechanically stable and becomes thermodynamically stable above 35 and 55 GPa, respectively. The estimated hardness from shear modulus is 34 GPa for ReB-WC, 28GPa for ReB-NiAs, 35GPa for ReC-WC and 37GPa for ReC-NiAs, indicating that they are potential candidates to be ultra-incompressible and hard materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new cyclic guanidinium ionic liquid OGI (1,3-dimethyl-2-N ''-methyl-N ''-octylimidazoguanidinium iodide) has been used as a quasi-solid-state electrolyte for dye-sensitized solar cells (DSCs), and 6.38% conversion efficiency was achieved at AM 1.5 simulated sunlight (9.81 mW cm(-2)). Further gelation with SiO2 nanoparticles afforded the solid-state electrolyte, which presented overall conversion efficiency of 5.85%. The diffusion properties of these OGI-based electrolytes were investigated. In the meantime, the optimal structure and ion-pairing interaction in OGI have been proposed by density functional theoretical calculation (DFT) at the B3LYP/6-21G(d,p) level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural, mechanical and electronic properties Of OsC2 were investigated by use of the density functional theory. Seven structures were considered, i.e., orthorhombic Cmca (No. 12, OsSi2), Pmmn (No. 59, 002) and Pnnm (No. 58, OsN2); tetragonal P4(2)/mnm (No. 136, OsO2) and 14/mmm (No. 139, CaC2); cubic Fm-3m (No. 225, CaF2) and Pa-3 (No. 205, PtN2). The results indicate that Cmca in OsSi2 type structure is energetically the most stable phase among the considered structures. It is also stable mechanically. OsC2 in Pmmn phase has the largest bulk modulus 319 GPa and shear modulus 194 GPa. The elastic anisotropy is discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of cyclometalating platinum(II) complexes with substituted 9-arylcarbazolyl chromophores have been synthesized and characterized. These complexes are thermally stable and most of them have been characterized by X-ray crystallography. The phosphorescence emissions of the complexes are dominated by (MLCT)-M-3 excited states. The excited state properties of these complexes can be modulated by varying the electronic characteristics of the cyclometalating ligands via substituent effects, thus allowing the emission to be tuned from bright green to yellow, orange and red light. The correlation between the functional properties of these metallophosphors and the results of density functional theory calculations was made. Because of the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such moiety can increase the highest occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent platinum(II) phosphor with 2-phenylpyridine ligand.