971 resultados para Cytoplasmic enzymes
Resumo:
The oxidized form of purple acid phosphatase from pig allantoic fluid has been crystallized in the presence of phosphate using the hanging-drop technique. The crystals belong to the space group P2(1)2(1)2(1) and have unit-cell parameters a = 66.8, b = 70.3, c = 78.7 Angstrom. Diffraction data collected from a cryocooled crystal using a conventional X-ray source extend to 1.55 Angstrom resolution. A knowledge of the three-dimensional structure of mammalian purple acid phosphatase will aid in understanding the substrate specificity of the enzyme and will be important in the rational design of inhibitors, with potential in the treatment of bone diseases.
Resumo:
Sodium cyanide is being used on reefs in the Asia-Pacific region to capture live fish for the aquarium industry, and to supply a rapidly growing, restaurant-based demand, The effects of cyanide on reef biota have not been fully explored. To investigate its effect on hard corals, we exposed small branch lips of Stylophora pistillata and Acropora aspera to cyanide concentrations estimated to occur during cyanide fishing. Pulse amplitude modulation (PAM) chlorophyll fluorescence techniques were used to examine photoinhibition and photosynthetic electron transport in the symbiotic algae (zooxanthellae) in the tissues of the corals, These measurements were made in situ and in real time using a recently developed submersible PAM fluorometer. In S. pistillata. exposure to cyanide resulted in an almost complete cessation in photosynthetic electron transport rate. Both species displayed marked decreases in the ratio of variable fluorescence (F-v) to maximal fluorescence (F-m) (dark-adapted F-v/F-m), following exposure to cyanide, signifying a decrease in photochemical efficiency. Dark-adapted F-v/F-m recovered to normal levels in similar to 6 d, although intense tissue discolouration, a phenomenon well-recognised as coral 'bleaching' was observed during this period, Bleaching was caused by loss of zooxanthellae from the coral tissues, a well-recognised sub-lethal stress response of corals. Using the technique of chlorophyll fluorescence quenching analysis, corals exposed to cyanide did not show light activation of Calvin cycle enzymes and developed high levels of non-photochemical quenching (q(N)), signifying the photoprotective dissipation of excess light as heat, These features are symptomatic of the known properties of cyanide as an inhibitor of enzymes of the Calvin cycle. The results of this in situ study show that an impairment of zooxanthellar photosynthesis is; the site of cyanide-mediated toxicity, and is the cue that causes corals to release their symbiotic zooxanthellac following cyanide exposure. This study demonstrates the efficacy of PBM fluorometry as a new tool for in situ stress assessment in zooxanthellate scleractinian corals. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Cysteine residues 86 and 91 of the beta subunit of the human interleukin (hIL)-3 receptor (h beta c) participate in disulfide-linked receptor subunit heterodimerization. This linkage is essential for receptor tyrosine phosphorylation, since the Cys-86 --> Ala (Mc4) and Cys-91 --> Ala (Mc5) mutations abolished both events. Here, we used these mutants to examine whether disulfide-linked receptor dimerization affects the biological and biochemical activities of the IL-3 receptor. Murine T cells expressing hIL-3R alpha and Mc4 or Mc5 did not proliferate in hIL-3, whereas cells expressing wild-type h beta c exhibited rapid proliferation. However, a small subpopulation of cells expressing each mutant could be selected for growth in IL-3, and these proliferated similarly to cells expressing wild-type h beta c, despite failing to undergo IL-3-stimulated h beta e tyrosine phosphorylation. The Mc4 and Mc5 mutations substantially reduced, but did not abrogate, IL-3-mediated anti-apoptotic activity in the unselected populations. Moreover, the mutations abolished IL-3-induced JAK2, STAT, and AKT activation in the unselected cells, whereas activation of these molecules in IL-3-selected cells was normal. In contrast, Mc4 and Mc5 showed a limited effect on activation of Erk1 and -2 in unselected cells. These data suggest that whereas disulfide-mediated cross-linking and h beta c tyrosine phosphorylation are normally important for receptor activation, alternative mechanisms can bypass these requirements.
Resumo:
Human acetyl coenzyme A-dependent N-acetyltransferase (EC 2.3.1.5) (NAT) catalyzes the biotransformation of a number of arylamine and hydrazine compounds. NAT isozymes are encoded at 2 loci; one encodes NAT1, formerly known as the monomorphic form of the enzyme, while the other encodes the polymorphic NAT2, which is responsible for individual differences in the ability to acetylate certain compounds. Human epidemiological studies have suggested an association between the acetylator phenotype and particular cancers such as those of the bladder and colon. In the present study, NAT1- and NAT2-specific riboprobes were used in hybridization histochemistry studies to localize NAT1 and NAT2 mRNA sequences in formalin-fixed, paraffin-embedded human tissue sections. Expression of both NAT1 and NAT2 mRNA was observed in liver, gastrointestinal tract tissues (esophagus, stomach, small intestine, and colon), ureter, bladder, and lung. In extrahepatic tissues, NAT1 and NAT2 mRNA expression was localized to intestinal epithelial cells, urothelial cells, and the epithelial cells of the respiratory bronchioles. The observed heterogeneity of NAT1 and NAT2 mRNA expression between human tissue types may be of significance in assessing their contribution to known organ-specific toxicities of various arylamine drugs and carcinogens.
Resumo:
Granulocyte-macrophage colony stimulating factor (GM-CSF), Interleukin-3 (IL-3) and Interleukin-5 (IL-5) have overlapping, pleiotropic effects on hematopoietic cells, including neutrophils, eosinophils, monocytes and early progenitor cells. The high-affinity receptors for human GM-CSF, IL-3, and IL-5 share a common beta-subunit (h beta(c)), which is essential for signalling and plays a major role in recruiting intracellular signalling molecules. While activation of the cytoplasmic tyrosine kinase JAK2 appears to be the initiating event for signalling, the immediate events that trigger this are still unclear. We have isolated a number of activated mutants of h beta(c), which can be grouped into classes defined by their state of receptor phosphorylation, their requirement for alpha subunit as a cofactor, and their activities in primary cells and cell lines. We discuss these findings with regard to the stoichiometry, activation, and signalling of the normal GM-CSF/IL-3/IL-5 receptor complexes. Specifically, this work has implications for the role of the ligand-specific alpha-subunits in initiating the signalling through the beta-subunit, the role of beta subunit dimerization as a receptor trigger, and the function of receptor tyrosine phosphorylation in generating growth and survival signals. Based on the properties of the activated mutants and the recent structures of erythropoietin receptor (Epo-R) complexes, we propose a model in which (1) activation of h beta(c) can occur via alternative states that differ with respect to stoichiometry and subunit assembly, but which all mediate proliferative responses, and (2) each of the different classes of activated mutants mimics one of these alternative states. (C) 2000 International Society for Experimental Hematology. Published by Elsevier Science Inc.
Resumo:
BACKGROUND. Prostate secretory granules (PSG) represent the basic secretory unit of the prostate gland, containing many of its exocrine proteases. Recent analysis of intraluminal corpora amylacea, a proposed by-product of PSG secretion, detected sulfated glycosaminoglycans (GAG) possibly keratan sulfate (KS),indicating a secretory mechanism for GAG in the human prostate surface epithelial cell. METHODS. Immunostains using anti-KS and anti-prostate-specific antigen (PSA) were evaluated on 10 sequential radical prostatectomy specimens, three of which had received neoadjuvant antiandrogen therapy. Extracts of normal secretory tissue as well as a sample composed almost entirely of prostatic stroma were subjected to Western blot analysis, using the same antibody panel. RESULTS. Keratan sulfate secretion from the normal prostate epithelial cell has been confirmed and correlates, as does PSA, with the presence of cytoplasmic PSG. No such correlation exists in most adenocarcinomas or in benign epithelium after androgen ablation. Western blot analyses confirmed tissue immunostains and demonstrated a secretory proteoglycan of 70-95 kDa. CONCLUSIONS. Recognition of PSG heralds a novel secretory mechanism within the human prostate gland that is linked to the secretion of KS. The role of KS in normal prostate secretion remains unknown, although it appears downregulated in neoplastic and androgen-ablated cells. (C) 2000 Wiley-Liss, Inc.
Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death
Resumo:
The cytoplasmic juxtamembrane region of the p75 neurotrophin receptor (p75(NTR)) has been found to be necessary and sufficient to initiate neural cell death. The region was named Chopper to distinguish it from CD95-like death domains. A 29-amino acid peptide corresponding to the Chopper region induced caspase- and calpain-mediated death in a variety of neural and nonneural cell types and was not inhibited by signaling through Trk (unlike killing by full-length p75(NTR)). Chopper triggered cell death only when bound to the plasma membrane by a lipid anchor, whereas non-anchored Chopper acted in a dominant-negative manner, blocking p75(NTR)-mediated death both in vitro and in vivo. Removal of the ectodomain of p75(NTR) increased the potency of Chopper activity, suggesting that it regulates the association of Chopper with downstream signaling proteins.
Resumo:
Arylamine N-acetyltransferase (NAT) was first identified as the inactivator of the anti-tubercular drug isoniazid, The enzyme was shown to catalyse the transfer of an acetyl group from acetyl-CoA to the terminal nitrogen of the hydrazine drug. The rate of inactivation of isoniazid was polymorphically distributed in the population and was one of the first examples of pharmacogenetic variation, NAT was identified recently in Mycobacterium tuberculosis and is a candidate for; modulating the response to isoniazid, Genome sequences have revealed many homologous members of this unique family of enzymes. The first three-dimensional structure of a member of the NAT family identifies a catalytic triad consisting of aspartate, histidine and cysteine proposed to form the activation mechanism. So far, all procaryotic NATs resemble the human enzyme which acetylates isoniazid (NAT2), Human NAT2 is characteristic of drug-metabolizing enzymes: it is found in liver and intestine, In humans and other mammals, there are up to three different isoenzymes. If only one isoenzyme is present, it is like human NAT1. Human NAT1 and its murine equivalent specifically acetylate the folate catabolite p-amino-benzoylglutamate. NAT1 and its murine homologue each have a ubiquitous tissue distribution and are expressed early in development at the blastocyst stage, During murine embryonic development, NAT is expressed in the developing neural tube. The proposed endogenous role of NAT in folate metabolism, and its multi-allelic nature, indicate that its role in development should be assessed further.
Resumo:
The polymorphisms of the important xenobiotic metabolizing enzymes CYP2D6, CYP2C19 and CYP2E1 have been studied extensively in a large number of populations and show significant heterogeneity in the frequency of different alleles/genotypes and in the prevalence of the extensive and poor metabolizer phenotypes, Understanding of inter-ethnic differences in genotypes is important in prediction of either beneficial or adverse effects from therapeutic agents and other xenobiotics. Since no data were available for Australian Aborigines, we investigated the frequencies of alleles and genotypes for CYP2D6, CYP2C19 and CYP2E1 in a population living in the far north of Western Australia. Because of its geographical isolation, this population can serve as a model to study the impact of evolutionary forces on the distribution of different alleles for xenobiotic metabolizing enzymes. Twelve CYP2D6 alleles were analysed, The wild-type allele *1 was the most frequent (85.8%) and the non-functional alleles (*4, *5, *16) had an overall frequency of less than 10%. Only one subject (0.4%) was a poor metabolizer for CYP2D6 because of the genotype *5/*5, For CYP2C19, the frequencies of the *1 (wild-type) and the non-functional (*2 and *3) alleles were 50.2%, 35.5% and 14.3%, respectively. The combined CYP2C19 genotypes (*2/*2, *2/*3 or *3/*3) correspond to a predicted frequency of 25.6% for the CYP2C19 poor metabolizer phenotype, For CYP2E1, only one subject had the rare c2 allele giving an overall allele frequency of 0.2%. For CYP2D6 and CYP2C19, allele frequencies and predicted phenotypes differed significantly from those for Caucasians but were similar to those for Orientals indicating a close relationship to East Asian populations. Differences between Aborigines and Orientals in allele frequencies for CYP2D6*10 and CYP2E1 c2 may have arisen through natural selection, or genetic drift, respectively, Pharmacogenetics 11:69-76 (C) 2001 Lippincott Williams & Wilkins.
Resumo:
The unactivated steroid receptors are chaperoned into a conformation that is optimal for binding hormone by a number of heat shock proteins, including Hsp90, Hsp70, Hsp40, and the immunophilin, FKBP52 (Hsp56). Together with its partner cochaperones, cyclophilin 40 (CyP40) and FKBP51, FKBP52 belongs to a distinct group of structurally related immunophilins that modulate steroid receptor function through their association with Hsp90. Due to the structural similarity between the component immunophilins, FKBP52 and cyclophilin 40, we decided to investigate whether CyP40 is also a heat shock protein. Exposure of MCF-7 breast cancer cells to elevated temperatures (42 degreesC for 3 hours) resulted in a 75-fold increase in CyP40 mRNA levels, but no corresponding increase in CyP40 protein expression, even after 7 hours of heat stress. The use of cycloheximide to inhibit protein synthesis revealed that in comparison to MCF-7 cells cultured at 37 degreesC, those exposed to heat stress (42 degreesC for 3 hours) displayed an elevated rate of degradation of both CyP40 and FKBP52 proteins. Concomitantly, the half-life of the CyP40 protein was reduced from more than 24 hours to just over 8 hours following heat shock. As no alteration in CyP40 protein levels occurred in cells exposed to heat shock, an elevated rate of degradation would imply that CyP40 protein was synthesized at an increased rate. hence the designation of human CyP40 as a heat shock protein. Application of heat stress elicited a marked redistribution of CyP40 protein in MCF-7 cells from a predominantly nucleolar localization, with some nuclear and cytoplasmic staining, to a pattern characterized by a pronounced nuclear accumulation of CyP40, with no distinguishable nucleolar staining. This increase in nuclear CyP40 possibly resulted from a redistribution of cytoplasmic and nucleolar CyP40, as no net increase in CyP40 expression levels occurred in response to stress. Exposure of MCF-7 cells to actinomycin D for 4 hours resulted in the translocation of the nucleolar marker protein, B23, from the nucleolus, with only a small reduction in nucleolar CyP40 levels. Under normal growth conditions, MCF-7 cells exhibited an apparent colocalization of CyP40 and FKBP52 within the nucleolus.
Resumo:
Transport of BPV-1 virus from the cell membrane to the nucleus was studied in vitro in CV-1 cells. At reduced temperature (4 degreesC). BPV-I binding to CV-1 cells was unaffected but there was no transport of virions across the cytosol. Electron microscopy showed BPV-I virions in association with microtubules in the cytoplasm, a finding confirmed by co-immunoprecipitation of L1 protein and tubulin. Internalization of virus was unimpaired in cells treated with the microtubule-depolymerizing drug nocodazole but virions were retained in cytoplasmic vesicles and not transported to the nucleus. We conclude that a microtubule transport mechanism in CV-1 cells moves intact BPV-1 virions from the cell surface to the nuclear membrane. (C) 2001 Academic Press.
Resumo:
Despite its toxicity, sulfite plays a key role in oxidative sulfur metabolism and there are even some microorganisms which can use it as sole electron source. Sulfite is the main intermediate in the oxidation of sulfur compounds to sulfate, the major product of most dissimilatory sulfur-oxidizing prokaryotes. Two pathways of sulfite oxidation are known: (1) direct oxidation to sulfate catalyzed by a sulfite: acceptor oxidoreductase, which is thought to be a molybdenum-containing enzyme; (2) indirect oxidation under the involvement of the enzymes adenylylsulfate (APS) reductase and ATP sulfurylase and/or adenylylsulfate phosphate adenylyltransferase with APS as an intermediate. The latter pathway allows substrate phosphorylation and occurs in the bacterial cytoplasm. Direct oxidation appears to have a wider distribution; however, a redundancy of pathways has been described for diverse photo- or chemotrophic, sulfite-oxidizing prokaryotes. In many pro- and also eukaryotes sulfite is formed as a degradative product from molecules containing sulfur as a heteroatom. In these organisms detoxification of sulfite is generally achieved by direct oxidation to sulfate. (C) 2001 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Cylindrospermopsis raciborskii is a bloom-forming cyanobacterium found in both tropical and temperate climates which produces cylindrospermopsin, a potent hepatotoxic secondary metabolite. This organism is notorious for its association with a significant human poisoning incident on Palm Island, Australia, which resulted in the hospitalization of 148 people. We have screened 13 C. raciborskii isolates from various regions of Australia and shown that both toxic and nontoxic strains exist within this species. No association was observed between geographical origin and toxin production. Polyketide synthases (PKSs) and peptide synthetases (PSs) are enzymes involved in secondary metabolite biosynthesis in cyanobacteria. Putative PKS and PS genes from C. raciborskii strains AWT205 and CYPO2OB were identified by PCR using degenerate primers based on conserved regions within each gene. Examination of the strain-specific distribution of the PKS and PS genes in C. raciborskii isolates demonstrated a direct link between the presence of these two genes and the ability to produce cylindrospermopsin. Interestingly, the possession of these two genes was also linked. They were also identified in an Anabaena bergii isolate that was demonstrated to produce cylindrospermopsin. Taken together, these data suggest a likely role for these determinants in secondary metabolite and toxin production by C. raciborskii. (C) 2001 John Wiley & Sons, Inc.
Resumo:
This paper describes four cases of equine polysaccharide storage myopathy which were confirmed by histological examination of muscle biopsy specimens. The horses were of mixed breeding, with warmblood and thoroughbred dominating. They all had recurrent episodes of rhabdomyolysis, indicated by clinical signs and increased plasma levels of muscle enzymes. They were managed conservatively and have continued athletic careers despite their disease.
Resumo:
The crystal structure of six functionally-distinct enzymes of the DMSO reductase family of molybdenum enzymes has revealed that the tertiary structure of the polypeptide that binds the bis(MGD)Mo cofactor is highly conserved. Differences in the catalytic properties of enzymes of this family are almost certainly dependent upon differences in the structure ofthe MO active site. In DMSO reductase from Rhodobacter species tryptophan- 116 (W 116) hydrogen-bonds to an 0x0 group coordinated to the MO ion. In addition a second amino acid side chain from tyrosine-114 (Y 114) is in close proximity to the 0x0 group. We have investigated the role of Y 114 and W 116 in DMSO reductase using site-directed mutagenesis,