983 resultados para Cross platform
Resumo:
The dinuclear system model has been further developed by introducing the barrier distribution function method in the process of heavy-ion capture and fusion to synthesize superheavy nuclei. The capture of two colliding nuclei, formation and de-excitation process of compound nucleus are decribed by using empirical coupled channel model, solving master equation numerically and statistical evaporation model, respectively. Within the framework of the dinuclear system model, the fusion-evaporation excitation functions of the systems Ca-48(Am-243, 3n-5n) (288-286)115 and Ca-48(Cm-248, 3n-5n)(293-291)116 are calculated, which are used for synthesizing new superheavy nuclei at Dubna in recent years. Isotopic dependence of production cross sections with double magic nucleus Ca-48 bombarding actinide targets U, Np, Pu, Am, Cm to synthesize superheavy nuclei with charged numbers Z=112-116 is analyzed systematically. Based on these analysis, the optimal projectile-target combination and the optimal excitation energy are proposed. It is shown that shell correction energy and neutron separation energy will play an important role on the isotopic dependence of production cross sections of superheavy nuclei.
Resumo:
Al K-shell X-ray yields are measured with highly charged Arq+ ions (q = 12-16) bombarding against aluminium. The energy range of the Ar ions is from 180 to 380 keV. K-shell ionization cross sections of aluminium are also obtained from the yields data. The experimental data is explained within the framework of 2p pi-2p sigma s rotational coupling. When Ar ions with 2p-shell vacancies are incident on aluminium, the vacancies begin to reduce. Meanwhile, collisions against Al atoms lead to the production of new 2p-shell vacancies of Ar ions. These Ar 2p-shell vacancies will transfer to the 1s orbit of an Al atom via 2p pi-2p sigma s rotational coupling leading to the emission of a K-shell X-ray of aluminiun. A model is constructed based on the base of the above physical scenario. The calculation results of the model are in agreement with the experimental results.
Resumo:
The neutron-rich target-like isotope Th-236 was produced in U-238-2p multinucleon transfer reaction between a 60MeV/u O-18 beam and nature U-238 targets. The thorium activities were radiochemically separated from the mixture of uranium and reaction products. The isotope Th-236 was identified by 642.2keV, 687.6keV and 229.6keV characteristic gamma-rays. The production cross section of Th-236 has been determined to be 250 +/- 50 mu b.
Resumo:
The neutron-rich nucleus He-8 is selected by RIBLL from the breakup of 50MeV/u C-13 on be target at HIRFL. The 2n-removal and 4n-removal cross section of He-8 was measured by using the transmission method. The point that He-4 is He-8 core can be reduced from the experiment data via the Ogawa's theory.
Resumo:
The differential cross-sections for elastic scattering of F-17 and O-17 on Pb-208 have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles shows clearly that there exists a turning point in the range of small scattering angles (6 degrees-20 degrees) for F-17 having exotic structure, while no turning point was observed in the O-17 elastic scattering. The experimental results have been compared with previous data. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering differential cross-sections of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the fact that the turning point of the logarithms of differential cross-sections appears at small angle for weakly bound nuclei could be used as a new probe to investigate the halo and skin phenomenon.
Resumo:
Within the dinuclear system (DNS) conception, instead of solving the Fokker-Planck equation (FPE) analytically, the master equation is solved numerically to calculate the fusion probability of super-heavy nuclei, so that the harmonic oscillator approximation to the potential energy of the DNS is avoided. The relative motion concerning the energy, the angular momentum and the fragment deformation relaxations is explicitly treated to couple with the diffusion process. The nucleon transition probabilities, which are derived microscopically, are related with the energy dissipation of the relative motion. Thus they are time dependent. Comparing with the analytical solution of FPE at the equilibrium, our time-dependent results preserve more dynamical effects. The calculated evaporation residue cross-sections for one-neutron emission channel of Pb-based reactions are basically in agreement with the known experimental data within one order of magnitude.
Resumo:
We study the non-Gaussianity induced by the Sunyaev-Zel'dovich (SZ) effect in cosmic microwave background (CMB) fluctuation maps. If a CMB map is contaminated by the SZ effect of galaxies or galaxy clusters, the CMB maps should have similar non-Gaussian features to the galaxy and cluster fields. Using the WMAP data and 2MASS galaxy catalogue, we show that the non-Gaussianity of the 2MASS galaxies is imprinted on WMAP maps. The signature of non-Gaussianity can be seen with the fourth-order cross-correlation between the wavelet variables of the WMAP maps and 2MASS clusters. The intensity of the fourth-order non-Gaussian features is found to be consistent with the contamination of the SZ effect of 2MASS galaxies. We also show that this non-Gaussianity can not be seen by the high-order autocorrelation of the WMAP. This is because the SZ signals in the autocorrelations of the WMAP data generally are weaker than the WMAP-2MASS cross-correlations by a factor f(2), which is the ratio between the powers of the SZ-effect map and the CMB fluctuations on the scale considered. Therefore, the ratio of high-order autocorrelations of CMB maps to cross-correlations of the CMB maps and galaxy field would be effective to constrain the powers of the SZ effect on various scales.
Resumo:
The barrier distribution function method is introduced in the dinuclear system model in the calculation of the transmission probability, which is the first stage in the synthesis of superheavy nuclei. Dynamical deformation and averaging collision orientations are considered in the calculation of the fusion probability by solving master equation numerically. Survival probability with respect to xn evaporation channel (x = 1-5) in the de-excitation process of the thermal compound nucleus is calculated, in which the level density of the Fermi-gas model is used. Production cross sections of a series of superheavy nuclei formed in the reactions taken magic and deformed nuclei as target in Ca-48 induced reactions are studied systematically. The calculated results are in good agreement with available experimental data. Isotopic dependence of the production cross sections in the reactions Ca-48 + Pu is analyzed.
Resumo:
Within the Boltzmann-Langevin equation, the neutron cluster production cross sections in the reactions induced by Be-14, He-8, He-6, Li-11, B-17, Be-11, C-19 on C-12 at 35MeV/u were studied. The experimental data for (4)n production cross section from Be-14+C-12 at 35MeV/u can be reproduced. It is found that the production cross section of neutron cluster is large in the reaction that the projectile has more halo nucleons. And the projectiles with big mass number are easy to produce the neutron cluster, when they have the same number of halo nucleons. The neutron cluster is probably mainly from the halo nucleons of projectile.
Resumo:
The differential cross sections of the dissipative products B, Q N, O, F, Ne, Na and Mg induced from the reactions of F-19+Al-27 at two incident energies have been measured at the HI-13 tandem accelerator, Beijing. In the case of a fixed beam incident energy 114MeV or 118.75MeV respectively, identical reaction system and the same detection system, 20 target points in steps of 2mm on(.)a 10mmx50mm rectangular Al foil have been bombarded. The experimental results indicate that the probability distribution of the cross sections is much wider than a standard Gaussian distribution. This non-reproducibility of the cross sections can't be interpreted by the statistical property of a finite count rate.
Resumo:
The medium effect of in-medium nucleon-nucleon cross section sigma(med)(NN) (alpha(m)) on the isoscaling parameter a is investigated for two couples of central nuclear reactions Ca-40 + Ca-48 and Ca-60 + Ca-48; Sn-112 + Sn-112 and Sn-124 + Sn-124 at beam energy region from 40 to 60 MeV/nucleon with isospin dependent quantum molecular dynamics. It is found that there is the obvious medium effect of sigma(med)(NN) (alpha(m)) on the isoscaling parameters alpha. The mechanism for the medium effect of sigma(med)(NN) (alpha(m)) on a is investigated.
Resumo:
Influences of the isospin-dependent in-medium nucleon nucleon cross-section (sigma(iso)(NN) and momentum-dependent interaction (MDI) on the isoscaling parameter a are investigated for two central collisions Ca-40 +Ca-40 and Ca-60+ Ca-60. These collisions are with isospin dependent quantum molecular dynamics in the beam energy region from 40 to 60 MeV/nucleon. The isotope yield ratio R-21 (N, Z) for the above two central collisions depends exponentially on the neutron number N and proton number Z of isotopes, with an isoscaling. In particular, the isospin-dependent (sigma(iso)(NN) and MDI induce an obvious de crease of the isoscaling parameter a. The mechanism of the decreases of a by both sigma(iso)(NN) and MDI are studied respectively.
Resumo:
We report on a measurement of the gamma(1S + 2S + 3S) -> e(+)e(-) cross section at midrapidity in p + p collisions at root s = 200 GeV. We find the cross section to be 114 +/- 38(stat + fit)(-24)(+23)(syst) pb. Perturbative QCD calculations at next-to-leading order in the color evaporation model are in agreement with our measurement, while calculations in the color singlet model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of gamma data to RHIC energies. The dielectron continuum in the invariant-mass range near the gamma is also studied to obtain a combined yield of e(+)e(-) pairs from the sum of the Drell-Yan process and b-(b) over bar production.
Resumo:
Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model and the scaling model according to nucleon effective mass, effects of elastic and inelastic NN scattering cross sections on pi(-)/pi(+) in the neutron-rich reaction of Ca-48 + Ca-48 at a beam energy of 400 MeV/nucleon are studied. It is found that cross-section effects of both NN elastic and inelastic scatterings affect Delta(1232), pi(-) and pi(+) production, as well as the value of pi(-)/pi(+).
Resumo:
We present a numerical study of shear viscosity and thermal conductivity of symmetric nuclear matter, pure neutron matter, and beta-stable nuclear matter, in the framework of the Brueckner theory. The calculation of in-medium cross sections and nucleon effective masses is performed with a consistent two- and three-body interaction. The investigation covers a wide baryon density range as needed in the applications to neutron stars. The results for the transport coefficients in beta-stable nuclear matter are used to make preliminary predictions on the damping time scales of nonradial modes in neutron stars.