957 resultados para Covalent anchorage
Resumo:
Metabolic bioactivation, glutathione depletion, and covalent binding are the early hallmark events after acetaminophen (APAP) overdose. However, the subsequent metabolic consequences contributing to APAP-induced hepatic necrosis and apoptosis have not been fully elucidated. In this study, serum metabolomes of control and APAP-treated wild-type and Cyp2e1-null mice were examined by liquid chromatography-mass spectrometry (LC-MS) and multivariate data analysis. A dose-response study showed that the accumulation of long-chain acylcarnitines in serum contributes to the separation of wild-type mice undergoing APAP-induced hepatotoxicity from other mouse groups in a multivariate model. This observation, in conjunction with the increase of triglycerides and free fatty acids in the serum of APAP-treated wild-type mice, suggested that APAP treatment can disrupt fatty acid beta-oxidation. A time-course study further indicated that both wild-type and Cyp2e1-null mice had their serum acylcarnitine levels markedly elevated within the early hours of APAP treatment. While remaining high in wild-type mice, serum acylcarnitine levels gradually returned to normal in Cyp2e1-null mice at the end of the 24 h treatment. Distinct from serum aminotransferase activity and hepatic glutathione levels, the pattern of serum acylcarnitine accumulation suggested that acylcarnitines can function as complementary biomarkers for monitoring the APAP-induced hepatotoxicity. An essential role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the regulation of serum acylcarnitine levels was established by comparing the metabolomic responses of wild-type and Ppara-null mice to a fasting challenge. The upregulation of PPARalpha activity following APAP treatment was transient in wild-type mice but was much more prolonged in Cyp2e1-null mice. Overall, serum metabolomics of APAP-induced hepatotoxicity revealed that the CYP2E1-mediated metabolic activation and oxidative stress following APAP treatment can cause irreversible inhibition of fatty acid oxidation, potentially through suppression of PPARalpha-regulated pathways.
Resumo:
PURPOSE: The aim of this study was to analyze prosthetic maintenance in partially edentulous patients with removable prostheses supported by teeth and strategic implants. MATERIALS AND METHODS: Sixty patients with removable partial prostheses and combined tooth-implant support were identified within the time period from 1998 to 2006. One group consisted of 42 patients (planned group) with a reduced residual dentition and in need of removable partial dentures (RPDs) or overdentures in the maxilla and/or mandible. They were admitted consecutively for treatment. Due to missing teeth in strategic important positions, one or two implants were placed to improve symmetrical denture support and retention. The majority of residual teeth exhibited an impaired structural integrity and therefore were provided with root copings for denture retention. A few vital teeth were used for telescopic crowns. The anchorage system for the strategic implants was selected accordingly. A second group of 18 patients (repair group) wearing RPDs with the loss of one abutment tooth due to biologic or mechanical failure was identified. These abutment teeth were replaced by 21 implants, and patients continued to wear their original prostheses. The observation time for planned and repair groups was 12 months to 8 years. All patients followed a regular maintenance schedule. Technical or biologic complications with supporting teeth or implants and prosthetic service were registered regularly. RESULTS: Three maxillary implants were lost after loading and three roots with copings had to be removed. Biologic problems included caries and periodontal/peri-implant infection with a significantly higher incidence in the repair group (P < .05). Technical complications with the dentures were rather frequent in both groups, mostly related to the anchorage system (matrices) of root copings and implants. Maintenance and complications were observed more frequently in the first year after delivery of the denture than in the following 3 years (P < .05). No denture had to be remade. CONCLUSIONS: The placement of a few implants allows for maintaining a compromised residual dentition for support of RPDs. The combination of root and implant support facilitates treatment planning and enhances designing the removable denture. It also proves to be a practical rescue method. Technical problems with the anchorage system were frequent, particularly in the first year after delivery of the dentures.
Resumo:
GABA(A) receptors are the major inhibitory neurotransmitter receptors in the brain. Some of them are targets of benzodiazepines that are widely used in clinical practice for their sedative/hypnotic, anxiolytic, muscle relaxant and anticonvulsant effects. In order to rationally separate these different drug actions, we need to understand the interaction of such compounds with the benzodiazepine-binding pocket. With this aim, we mutated residues located in the benzodiazepine-binding site individually to cysteine. These mutated receptors were combined with benzodiazepine site ligands carrying a cysteine reactive group in a defined position. Proximal apposition of reaction partners will lead to a covalent reaction. We describe here such proximity-accelerated chemical coupling reactions of alpha(1)S205C and alpha(1)T206C with a diazepam derivative modified at the C-3 position with a reactive isothiocyanate group (-NCS). We also provide new data that identify alpha(1)H101C and alpha(1)N102C as exclusive sites of the reaction of a diazepam derivative where the -Cl atom is replaced by a -NCS group. Based on these observations we propose a relative positioning of diazepam within the benzodiazepine-binding site of alpha(1)beta(2)gamma(2) receptors.
Resumo:
Pedicle hooks which are used as an anchorage for posterior spinal instrumentation may be subjected to considerable three-dimensional forces. In order to achieve stronger attachment to the implantation site, hooks using screws for additional fixation have been developed. The failure loads and mechanisms of three such devices have been experimentally determined on human thoracic vertebrae: the Universal Spine System (USS) pedicle hook with one screw, a prototype pedicle hook with two screws and the Cotrel-Dubousset (CD) pedicle hook with screw. The USS hooks use 3.2-mm self-tapping fixation screws which pass into the pedicle, whereas the CD hook is stabilised with a 3-mm set screw pressing against the superior part of the facet joint. A clinically established 5-mm pedicle screw was tested for comparison. A matched pair experimental design was implemented to evaluate these implants in constrained (series I) and rotationally unconstrained (series II) posterior pull-out tests. In the constrained tests the pedicle screw was the strongest implant, with an average pull-out force of 1650 N (SD 623 N). The prototype hook was comparable, with an average failure load of 1530 N (SD 414 N). The average pull-out force of the USS hook with one screw was 910 N (SD 243 N), not significantly different to the CD hook's average failure load of 740 N (SD 189 N). The result of the unconstrained tests were similar, with the prototype hook being the strongest device (average 1617 N, SD 652 N). However, in this series the difference in failure load between the USS hook with one screw and the CD hook was significant. Average failure loads of 792 N (SD 184 N) for the USS hook and 464 N (SD 279 N) for the CD hook were measured. A pedicular fracture in the plane of the fixation screw was the most common failure mode for USS hooks.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results demonstrate a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five out of the eight cell lines (IC50 2-43nM). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biological functions, such as cellular morphology, MET-dependent cell motility and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET mutated variants. Animals were randomized for the treatment with EMD1214063 (50mg/kg/day) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, while tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small molecule inhibitor with selective activity towards mutated MET variants.
Resumo:
It is unknown how receptor binding by the paramyxovirus attachment proteins (HN, H, or G) triggers the fusion (F) protein to fuse with the plasma membrane for cell entry. H-proteins of the morbillivirus genus consist of a stalk ectodomain supporting a cuboidal head; physiological oligomers consist of non-covalent dimer-of-dimers. We report here the successful engineering of intermolecular disulfide bonds within the central region (residues 91-115) of the morbillivirus H-stalk; a sub-domain that also encompasses the putative F-contacting section (residues 111-118). Remarkably, several intersubunit crosslinks abrogated membrane fusion, but bioactivity was restored under reducing conditions. This phenotype extended equally to H proteins derived from virulent and attenuated morbillivirus strains and was independent of the nature of the contacted receptor. Our data reveal that the morbillivirus H-stalk domain is composed of four tightly-packed subunits. Upon receptor binding, these subunits structurally rearrange, possibly inducing conformational changes within the central region of the stalk, which, in turn, promote fusion. Given that the fundamental architecture appears conserved among paramyxovirus attachment protein stalk domains, we predict that these motions may act as a universal paramyxovirus F-triggering mechanism.
Resumo:
One of the biggest issues of modern materials science is developing of strategies to create large and ordered assemblies in the form of discrete nanoscale objects. Oligopyrenotides (OPs) represent novel class of amphiphilic molecules which tend to self-assemble forming highly ordered structures. As has been already shown OPs are able to form 1D («rod-like») supramolecular polymer [1]. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that certain changes to design of pyrene’s molecular core allow Py3 form 2D supramolecular assemblies («nanosheets») instead of 1D. Two dimensional supramolecular polymers are attractive objects due to their exceptional properties which originate from in-plan alignment of molecular units in the sheets with constant thickness ~ 2 nm [2]. These assemblies have high degree of internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic, negatively charged phosphates. The Py3 units are hold up by non-covalent interactions what makes these assemblies totally reversible. Moreover the polymerization occurs via nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM)
Resumo:
One of the biggest issues of modern materials science is developing of strategies to create large and ordered assemblies in the form of discrete nanoscale objects. Oligopyrenotides (OPs) represent novel class of amphiphilic molecules which tend to self-assemble forming highly ordered structures. As has been already shown OPs are able to form 1D («rod-like») supramolecular polymer [1]. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that certain changes to design of pyrene’s molecular core allow Py3 form 2D supramolecular assemblies («nanosheets») instead of 1D. Two dimensional supramolecular polymers are attractive objects due to their exceptional properties which originate from in-plan alignment of molecular units in the sheets with constant thickness ~ 2 nm [2]. These assemblies have high degree of internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic, negatively charged phosphates. The Py3 units are hold up by non-covalent interactions what makes these assemblies totally reversible. Moreover the polymerization occurs via nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM)
Resumo:
BACKGROUND CONTEXT A new device, DensiProbe, has been developed to provide surgeons with intraoperative information about bone strength by measuring the peak breakaway torque. In cases of low bone quality, the treatment can be adapted to the patient's condition, for example, by improving screw-anchorage with augmentation techniques. PURPOSE The objective of this study was to investigate the feasibility of DensiProbe Spine in patients undergoing transpedicular fixation. STUDY DESIGN Prospective feasibility study on consecutive patients. PATIENT SAMPLE Fourteen women and 16 men were included in this study. OUTCOME MEASURES Local and general bone quality. METHODS These consecutive patients scheduled for transpedicular fixation were evaluated for bone mineral density (BMD), which was measured globally by dual-energy X-ray absorptiometry and locally via biopsies using quantitative microcomputed tomography. The breakaway torque force within the vertebral body was assessed intraoperatively via the transpedicular approach with the DensiProbe Spine. The results were correlated with the areal BMD at the lumbar spine and the local volumetric BMD (vBMD) and a subjective impression of bone strength. The feasibility of the method was evaluated, and the clinical and radiological performance was evaluated over a 1-year follow-up. This study was funded by an AO Spine research grant; DensiProbe was developed at the AO Research Institute Davos, Switzerland; the AO Foundation is owner of the intellectual property rights. RESULTS In 30 patients, 69 vertebral levels were examined. The breakaway torque consistently correlated with an experienced surgeon's quantified impression of resistance as well as with vBMD of the same vertebra. Beyond a marginal prolongation of surgery time, no adverse events related to the usage of the device were observed. CONCLUSIONS The intraoperative transpedicular measurement of the peak breakaway torque was technically feasible, safe, and reliably predictive of local vBMD during dorsal spinal instrumentations in a clinical setting. Larger studies are needed to define specific thresholds that indicate a need for the augmentation or instrumentation of additional levels.
Resumo:
BACKGROUND The treatment of proximal humerus fractures in patients with poor bone quality remains a challenge in trauma surgery. Augmentation with polymethylmethacrylate (PMMA) cement is a possible method to strengthen the implant anchorage in osteoporotic bone and to avoid loss of reduction and reduce the cut-out risk. The polymerisation of PMMA during cement setting leads, however, to an exothermic reaction and the development of supraphysiological temperatures may harm the bone and cartilage. This study addresses the issue of heat development during augmentation of subchondrally placed proximal humerus plate screws with PMMA and the possible risk of bone and cartilage necrosis and apoptosis. METHODS Seven fresh frozen humeri from geriatric female donors were instrumented with the proximal humerus interlocking system (PHILOS) plate and placed in a 37°C water bath. Thereafter, four proximal perforated screws were augmented with 0.5 ml PMMA each. During augmentation, the temperatures in the subchondral bone and on the articular surface were recorded with K-type thermocouples. The measured temperatures were compared to threshold values for necrosis and apoptosis of bone and cartilage reported in the literature. RESULTS The heat development was highest around the augmented tips of the perforated screws and diminished with growing distance from the cement cloud. The highest temperature recorded in the subchondral bone reached 43.5°C and the longest exposure time above 42°C was 86s. The highest temperature measured on the articular surface amounted to 38.6°C and the longest exposure time above 38°C was 5 min and 32s. CONCLUSION The study shows that augmentation of the proximal screws of the PHILOS plate with PMMA leads to a locally limited development of supraphysiological temperatures in the cement cloud and closely around it. The critical threshold values for necrosis and apoptosis of cartilage and subchondral bone reported in the literature, however, are not reached. In order to avoid cement extravasation, special care should be taken in detecting perforations or intra-articular cracks in the humeral head.
Resumo:
Bei Medikamentenallergien kommt es zu Immunreaktionen, die gegen das Medikament gerichtet sind und klinische Symptome verursachen. Man unterscheidet zwischen Hapten- und p-i-bedingten Reaktionen, wobei letztere nur für T-Zell-Reaktionen nachgewiesen wurden. Die häufigsten Immunmechanismen, welche Medikamentenallergien zugrunde liegen, sind Vermehrung von spezifischen IgE-produzierenden B- und/oder spezifischen T-Zellen. IgG-vermittelte Reaktionen, die z.B. eine hämolytische Anämie verursachen können, sind selten. Spezifische IgE können mittels CAP-Technologie nachgewiesen werden. Das Medikament muss an eine Trägersubstanz covalent gebunden werden, was den Nachteil mit sich bringt, dass die entsprechende Bindungsstelle im Medikament für IgE nicht erkennbar ist. Der Basophilenaktivierungstest (BAT) arbeitet meist mit freiem, ungebundenem Medikament. Wie die IgE-Vernetzung stattfindet, ist allerdings unklar. Beide Teste sind nicht genügend sensitiv um den In-vivo-Test (Prick oder i.d.) zu ersetzen. Bei T-Zell-Reaktionen wird in vitro meist die Proliferation der durch das Medikament stimulierten T-Zellen erfasst. Die Blutzellen (antikoaguliertes Blut) sollte innerhalb von 24 h im Labor zur Verarbeitung ankommen, wo die Zellseparation durchgeführt wird, um die Zellen mit dem Medikament zu stimulieren. Diese Stimulation kann durch Messung von Aktivierungsmarker (mittels Flow-Zytometrie), sezernierter Zytokine (ELISA) oder 3H-Thymidin Einbau in die sich teilende Zellen (Lymphozytentransformations- Test, LTT) erfasst werden. Am meisten Erfahrung liegt für den LTT vor. Die Sensitivität wird bei eindeutigen Fällen auf 50 – 70% geschätzt, hängt aber stark vom Krankheitsbild und Medikament ab. Schwere makulopapulöse Reaktionen und DRESS (Drug Rash with Eosinophilia and Systemic Symptoms), AGEP (acute generalized exanthematous pustulosis) sind meist positiv im LTT, aber schwere bullöse Reaktionen (SJS/TEN; Stevens-Johnson Syndrom/toxische epidermale Nekrolyse) werden besser mittels Zytotoxteste und Zytokinsekretion erfasst, da eine T-Zell-Proliferation weniger prominent ist. Trotz der limitierten Sensitivität sind diese Teste gut geeignet um Kreuzreaktionen zu erfassen, bzw. für mechanistische Studien. Da Provokationsteste bei verzögerten Medikamentenallergien nicht zur Verfügung stehen (es ist unklar, wie lange und wie hoch dosiert man das Medikament bei verzögerten Reaktionen geben muss), werden diese Teste in Zukunft eher mehr eingesetzt werden. Wichtig ist, dass sie selten falsch positiv sind, und ein positives Resultat als relevant angesehen werden kann. Für die Abklärung seltener IgG-vermittelter Reaktionen kann man einen modifizierten Coombs-Test versuchen.
Resumo:
Protozoan parasites are one of the major causes of diseases worldwide. The vector transmitted parasites exhibit complex life cycles involving interactions between humans, protozoa, and arthropods. In order to adapt themselves to the changing microenvironments, they have to undergo complex morphological and metabolic changes. These changes can be brought about by expressing a new pool of proteins in the cell or by modifying the existing repertoire of proteins via posttranslational modifications (PTMs). PTMs involve covalent modification and processing of proteins thereby modulating their functions. Some of these changes may involve PTMs of parasite proteins to help the parasite survive within the host and the vector. Out of many PTMs known, three are unique since they occur only on single proteins: ethanolamine phosphoglycerol (EPG) glutamate, hypusine and diphthamide. These modifications occur on eukaryotic elongation factor 1A (eEF1A), eukaryotic initiation factor 5A (eIF5A) and eukaryotic elongation factor 2 (eEF2), respectively. Interestingly, the proteins carrying these unique modifications are all involved in the elongation steps of translation. Here we review these unique PTMs, which are well conserved in protozoan parasites, and discuss their roles in viability and pathogenesis of parasites. Characterization of these modifications and studying their roles in physiology as well as pathogenesis will provide new insights in parasite biology, which may also help in developing new therapeutic interventions.