983 resultados para Correction of soil acidity
Resumo:
ABSTRACT Levels of Zn in tropical soils profoundly influences growth and nutrition of tree crops. Research was undertaken to assess the effect of soil Zn on growth and nutrition of clonal cacao tree seedlings of PH 16. Three acidic Oxisol soils differing in texture were used with nine doses of Zn (0, 1, 2, 4, 8, 16, 32, 48, and 64 mg dm-3). Rooted clonal seedlings were grown in plastic pot with 11 dm-3 of the soils at varying Zn levels for 240 days. At harvest growth (dry matter mass of leaves, stems, shoots, roots, and total) and nutrient concentrations were determined. The clonal cacao seedlings showed differences for production of dry matter mass and foliar nutrient concentrations for P, K, Ca, Mg, Mn, Fe, Zn, and Cu. There was Zn toxicity in all soils.
Resumo:
The purpose of this research is to explore the variability on the soil thermal conductivity -λ- after a prescribe fire, and to assess the effects of the ashes on the heat transfer once it"s were incorporated into the soil matrix. Sampling plot was located in the Montgrí Massif (NE of Spain). A set of 42 soil samples between surface and 5 cm depth was collected before and after the fire. To characterize the soil chemical and physical variables were analyzed. To determine the vari-ability on the soil λ a dry-out curve per scenario (before and after fire) was determined. SoilRho® method based on ASTM D-5334-08 which was validated by LabFerrer was used. Soil thermal conductivity has shown changes in their values. Indeed, in all moisture scenarios the values of soil λ decreased after soil was burnt. The critical point in the rela-tionship ϴ (λ) for the soil after fire which always was stronger than soil before to be burnt. Soil with"white" ashes showed a high thermal conductivity. An X-Ray diffractometry analysis allowed to clarify and to verify these results. To sum up, we could say that thermal conductivity presents changes when the scenario changes, i.e. before and after to be burnt. On the other hand, the volume of ashes incorporated on the soil increased the differences between no burnt and burnt soil, showing even some improvements on the heat transfer when water content started to govern the process.
Resumo:
The abandonment of agricultural land in mountainous areas has been an outstanding problem along the last century and has captured the attention of scientists, technicians and administrations, for the dramatic consequences sometimes occurred due to soil instability, steep slopes, rainfall regimes and wildfires. Hidromorfological and pedological alterations causing exceptional floods and accelerated erosion processes has therefore been studied, identifying the cause in the loss of landscape heterogeneity. Through the disappearance of agricultural works and drainage maintenance, slope stability has resulted severely affected. The mechanization of agriculture has caused the displacement of vines, olives and corks trees cultivation in terraced areas along the Mediterranean catchment towards more economically suitable areas. On the one hand, land use and management changes have implicated sociological changes as well, transforming areas inhabited by agricultural communities into deserted areas where the colonization of disorganized spontaneous vegetation has buried a valuable rural patrimony. On the other hand, lacking of planning and management of the abandoned areas has produced badlands and infertile soils due to wildfire and high erosion rates strongly degrading the whole ecosystems. In other cases, after land abandonment a process of soil regeneration has been recorded. Investigations have been conducted in a part of NE Spain where extended areas of terraced soils previously cultivated have been abandoned in the last century. The selected environments were semi-abandoned vineyards, semi-abandoned olive groves, abandoned stands of cork trees, abandoned stands of pine trees, scrubland of Cistaceaea, scrubland of Ericaceaea, and pasture. The research work was focused on the study of most relevant physical, chemical and biological soil properties, as well as runoff and erosion under soils with different plant cover to establish the abandonment effect on soil quality, due to the peculiarity and vulnerability of these soils with a much reduced depth. The period of observation was carried out from autumn 2009 to autumn 2010. The sediment concentration of soil erosion under vines was recorded as 34.52 g/l while under pasture it was 4.66 g/l. In addition, the soil under vines showed the least amount of organic matter, which was 12 times lower than all other soil environments. The carbon dioxide (CO2) and total glomalin (TG) ratio to soil organic carbon (SOC) in this soil was 0.11 and 0.31 respectively. However, the soil under pasture contained a higher amount of organic matter and showed that the CO2 and TG ratio to SOC was 0.02 and 0.11 respectively indicating that the soil under pasture better preserves the soil carbon pool. A similar trend was found in the intermediate soils in the sequence of land use change and abandonment. Soil structural stability increased in the two soil fractions investigated (0.25-2.00 mm, 2.0-5.6 mm) especially in those soils that did not undergo periodical perturbations like wildfires. Soil quality indexes were obtained by using relevant physical and chemical soil parameters. Factor analysis carried out to study the relationship between all soil parameters allowed to related variables and environments and identify those areas that better contribute to soil quality towards others that may need more attention to avoid further degradation processes
Resumo:
This study is focused on the dominance exerted by the invasive Argentine ant over native ants in a coastal Mediterranean area. Theimpact of this invasive ant on native ant assemblages and its consequences on total ant biomass and on the intensity of habitat explorationwere evaluated. Foraging ants were observed and their trajectories recorded during 5-minute periods in two study zones, one invaded andthe other non-invaded. Ant species detected, ant worker abundance, ant biomass and the intensity of soil surface searching done by antswere compared between the two zones. The Argentine ant invasion provoked a drastic reduction of the ant species richness. Apparentlyonly one native ant species is able to coexist with the Argentine ant, the cryptic Plagiolepis pygmaea. Ant worker abundance was also modified after the invasion: the number of Argentine ant workers detected, which represented 92% of the invaded zone, was two times higher than the number of native ant workers detected in the non-invaded zone. The total ant biomass was inversely affected, becoming four times lower in the invaded zone highly dominated by Linepithema humile. The higher number of Argentine ant workers and their fast tempo of activity implied an alteration of the intensity of soil surface searching: scanning by the Argentine ants in the invaded zone was higher than that done by the native ants in the non-invaded zone, and the estimated time for a complete soil surface scan was 64 minutes in the invaded zone and 108 minutes in the non-invaded zone. Consequently, resources will be discovered faster by ants in the invaded zone than in the non-invaded zone. The increase of the mean temperature and the decrease of the relative humidity from May to August reduced the ant activity in the two study zones but this reduction was greater in the invaded zone
Resumo:
The mineral waste studied was host rock from a chromite mine located in Andorinha/Bahia, extracted and stockpiled in yards without specific application. Host rock was submitted to chemical analysis, XRD, SEM-EDS, IR and TGA and classified according to ABNT standards for solid waste classification. Analyses confirmed that this host rock, classified as ultrabasic, consists mainly of dolomite, calcite and diopside. Hazard assessment results showed this host rock should be classified as class II B - inert waste, important for its potential application in agriculture as a soil acidity correction agent.
Resumo:
Diseases induced by Rhizoctonia solani, like damping-off and root and stem rot on soybean (Glycine max), are a serious problem around the world. The addition of some organic material to soil is an alternative control for these diseases. In this study, benzaldehyde and dried powders of kudzu (Pueraria lobata), velvetbean or mucuna (Mucuna deeringiana), and pine bark (Pinus spp.) were used in an attempt to improve soybean plant growth and to reduce the disease R. solani (AG-4) causes on soybean. Benzaldehyde (0.1-0.4 mL/kg of soil) and velvetbean (25-100 g/kg) significantly (P < 0.05) reduced mycelial growth of R. solani in laboratory tests. In greenhouse experiments, the percentage of non-diseased plants was higher in treatments with pine bark and velvetbean (50-100 g/kg). In soil treated with kudzu (r²=0.91) or velvetbean (r²=0.94), increasing rates of these amendments tended to increase plant fresh mass. In microplot field conditions, soil amended with velvetbean (r²=0.85) and pine-bark (r²=0.61) significantly reduced disease on soybean. Numbers of Bacillus megaterium (r²=0.87) and Trichoderma hamatum (r²=0.92) and hydrolysis of fluorescein diacetate (r²=0.91) were higher in soil amended with increasing rates of velvetbean, indicating an increase in microbial activity. From this study it is concluded that dried powders of velvetbean and pine bark added to soil can reduce Rhizoctonia-induced disease on soybean.
Resumo:
Southern blight (Sclerotium rolfsii) of soybean (Glycine max) is an important disease throughout the world. Some soil amendments can reduce disease levels by improving soil microbial activity. The main goals of this study were to investigate the effects of soil amendments such as dried powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine bark (Pinus taeda), on soil microbial population and disease caused by S. rolfsii on soybean. Pine bark, velvetbean (mucuna) and kudzu (25 g kg-1) added to soil were effective in reducing disease incidence [non-amended (NA) ~ 39%; amended (A) ~ 2 to 11%)]. Bacillus megaterium was the bacteria most frequently isolated in soils with velvetbean or kudzu (NA ~ log 5.7 CFU g-1 of dried soil; A ~ log 6.2). Soils with velvetbean and kudzu stimulated increase in population of Enterobacter aerogenes (NA ~ log 3; A ~ log 5.1-5.8). Pseudomonas putida population was higher in A than in NA (NA ~ log 4; A ~ log 5.5), and was negatively correlated (r = -0.83, P = 1%) to disease incidence. Soil amended with kudzu and pine bark stimulated increases in populations of Trichoderma koningii (NA ~ log 1.6; A ~ log 2.9) and Penicillium citreonigrum (NA ~ log 1.3; A ~ log 2.6), respectively. Penicillium herquei soil population increased with addition of kudzu (NA ~ log 1.2; A, ~ log 2.5). These microorganisms are antagonists of soil-borne pathogens. Powders of velvetbean, kudzu, and pine bark can increase antagonistic population in soil and reduce disease.
EVALUATION OF SUBSTRATES AND AMF SPORULATION IN THE PRODUCTION OF SEEDLINGS OF NATIVE FOREST SPECIES
Resumo:
ABSTRACT The objective of this study was to evaluate organic substrates in the production of canafistula (Peltophorum dubium) (Spreng.) Taub, cutieira (Joannesiaprinceps Vell.), jatoba (Hymenaea courbaril L.) and rubber tree (Hevea brasiliensis M. Arg.) seedlings, native trees with potential use in forest restoration programs. The design was completely randomized with 10 substrate formulations with 4 repetitions of 3 plants for the four species. The evaluated substrates consisted of soil, bovine manure (BM), poultry manure (PM), chemical fertilizer (CF) and sand, in different proportions. The experiment was concluded at the end of 180 days for canafistula, cutieira and rubber and 210 days for jatoba. At the end of these periods, the root (RDM), shoot (SDM) and total (TDM) the dry matters of the seedlings were determined. Quantification of AMF spores and normalization between samples through SPORES/RDM correction were also performed. The Scott-Knott test at 5% probability was applied. Regarding biomass production, only canafistula had significant difference among the tested substrates. In relation to sporulation, the highest values were observed in cutieira and rubber tree in substrate containing PM. The substrates composed of 40 or 50% soil + 20% sand + 30% or 40 PM for canafistula; 50% soil + 20% sand + 30% PM for cutieira; and for jatoba and rubber tree 60% soil + 20% sand + 20% PM, enabled the best results in terms of biomass production in seedlings and AMF sporulation.
Resumo:
Soil tillage is a process that accelerates soil organic matter decomposition transferring carbon to atmosphere, mainly in the CO2 form. In this study, the effect of rotary tillage on soil CO2 emission was investigated, including the presence of crop residues on the surface.Emissions were evaluated during 15 days after tillage in 3 plots: 1) non-tilled and without crop residues on soil surface (NTwo), 2) rotary tiller without the presence of crop residues on soil surface (RTwo), and 3) rotary tiller with the presence of crop residues in soil surface (RTw). Emissions from the RTw plot were higher than the other plots, (0.777 g CO2 m-2 h-1), with the lowest emissions recorded in the NTwo plot (0.414 g CO2 m-2 h-1). Total emission indicates that the difference of C-CO2 emitted to atmosphere corresponds to 3% of the total additional carbon in the crop residues in the RTw plot compared to RTwo. The increase in the RTwo emission in comparison to NTwo was followed by changes in the aggregate size distribution, especially those with average diameter lower than 2 mm. The increase in emission from the RTw plot in relation to RTwo was related to a decrease in crop residue mass on the surface, and its higher fragmentation and incorporation in soil. When the linear correlation between soil CO2 emission, and soil temperature and soil moisture is considered, only the RTw treatment showed significant correlation (p<0.05) with soil moisture.
Resumo:
Taking into account that the sampling intensity of soil attributes is a determining factor for applying of concepts of precision agriculture, this study aims to determine the spatial distribution pattern of soil attributes and corn yield at four soil sampling intensities and verify how sampling intensity affects cause-effect relationship between soil attributes and corn yield. A 100-referenced point sample grid was imposed on the experimental site. Thus, each sampling cell encompassed an area of 45 m² and was composed of five 10-m long crop rows, where referenced points were considered the center of the cell. Samples were taken from at 0 to 0.1 m and 0.1 to 0.2 m depths. Soil chemical attributes and clay content were evaluated. Sampling intensities were established by initial 100-point sampling, resulting data sets of 100; 75; 50 and 25 points. The data were submitted to descriptive statistical and geostatistics analyses. The best sampling intensity to know the spatial distribution pattern was dependent on the soil attribute being studied. The attributes P and K+ content showed higher spatial variability; while the clay content, Ca2+, Mg2+ and base saturation values (V) showed lesser spatial variability. The spatial distribution pattern of clay content and V at the 100-point sampling were the ones which best explained the spatial distribution pattern of corn yield.
Resumo:
The draft forces of soil engaging tines and theoretical analysis compared to existing mathematical models, have yet not been studied in Rio Grande do Sul soils. From the existing models, those which can get the closest fitting draft forces to real measure on field have been established for two of Rio Grande do Sul soils. An Albaqualf and a Paleudult were evaluated. From the studied models, those suggested by Reece, so called "Universal Earthmoving Equation", Hettiaratchi and Reece, and Godwin and Spoor were the best fitting ones, comparing the calculated results with those measured "in situ". Allowing for the less complexity of Reece's model, it is suggested that this model should be used for modeling draft forces prediction for narrow tines in Albaqualf and Paleudut.
Resumo:
The objective of this study was to characterize water application rate, water application pattern width, flow rate, water distribution uniformity and soil loss caused by nozzles of the Low Energy Precision Aplication (LEPA) type Quad-Spray emitter. The study was carried out at the Hydraulic and Irrigation Laboratory of the Department of Engineering at the Federal University of Lavras, in Lavras, state of Minas Gerais - MG, Brazil. Twenty-two (22) LEPA Quad-Spray emitter nozzles were evaluated, with nozzle diameter ranging from 1.59 to 9.92 mm. The experimental design used was entirely randomized, with three replications.Increasing values of nozzle flow rate ranging from 77.44 up to 3,044 L h-1, were obtained with increasing nozzle diameter sizes. Application pattern width ranged from 0.56 up to 3.24m, according to nozzles diameter size. Low values of CDU (maximum of 35.73%) were observed when using the Quad-Spray nozzles. Observed average water application rates covered the range between 68.05 mm h-1 (the lowest value that was obtained with the 2.38mm nozzle) and 258.15 mm h-1 (the highest value that was observed with the 9.92 mm). Average water application rates increased in a simple non-linear function with the increase of nozzle size diameter. However, the weighted average increase in the amount of soil loss by erosion was not related to the increase of weighted average water application values.
Resumo:
The objective of this study consisted on mapping the use and soil occupation and evaluation of the quality of irrigation water used in Salto do Lontra, in the state of Paraná, Brazil. Images of the satellite SPOT-5 were used to perform the supervised classification of the Maximum Likelihood algorithm - MAXVER, and the water quality parameters analyzed were pH, EC, HCO3-, Cl-, PO4(3-), NO3-, turbidity, temperature and thermotolerant coliforms in two distinct rainfall periods. The water quality data were subjected to statistical analysis by the techniques of PCA and FA, to identify the most relevant variables in assessing the quality of irrigation water. The characterization of soil use and occupation by the classifier MAXVER allowed the identification of the following classes: crops, bare soil/stubble, forests and urban area. The PCA technique applied to irrigation water quality data explained 53.27% of the variation in water quality among the sampled points. Nitrate, thermotolerant coliforms, temperature, electrical conductivity and bicarbonate were the parameters that best explained the spatial variation of water quality.
Resumo:
The study was conducted in an area of expansion of sugarcane at Vale do Paraná factory in Suzanápolis city - São Paulo (SP), in Brazil, in the northwestern region of the State of São Paulo. It was used the sugarcane variety RB92-5345, 1.5m of spacing between rows, in an Ultisol. The study aimed to evaluate the productivity of sugarcane and first ratoon and some soil chemical attributes in function of soil tillage and application or not of gypsum. The experimental design was randomized blocks with six treatments, in a factorial 3x2 and six replicates, the main treatments were soil tillage with three equipments, moldboard plow, chisel plow, and heavy harrow, and two secondary treatments with application of 1 t ha-1of gypsum and no gypsum. After each harvest of cane, the soil was characterized as to its fertility indicators in layers of 0.0-0.15; 0.15-0.30 and 0.30-0.45m. Differences in values of soil chemical attributes due to the methods of preparation occurred in the sugarcane did not last until the harvest of the 1st ratoon cane, and also did not influence the crop productivity. The gypsum application resulted in higher values of total recoverable sugar (TRS) and the productivity of tons of stems per hectare (TSH) to sugarcane and 1st ratoon cane, respectively, confirming the initial hypothesis.
Resumo:
Soil physical quality can be easily and quickly evaluated by using simple equipment to identify levels of soil compaction. Hence, it is necessary to know the variables responsible for changes in the soil penetration resistance (SPR). The aim of this review is to identify the main factors related to the various equipment used for assessing SPR as a soil physical quality indicator in agriculture. This literature review describes the different types of equipment used and its relationship with SPR. A wide range of procedures, devices, and equipments are available. Much of variability in SPR results is related to the equipment model, cone angle and diameter, and penetration rate. Usually, restrictions to root growth are correlated with SPR values above 2-3 MPa. However, comparisons of SPR values obtained under different soil moisture regimes in the same soil type have provided conflicting results of difficult interpretation. In order to minimize these problems, there is a need for standardization of measurement procedures and interpretation, and/or correction of SPR values according to a soil water content of reference.