964 resultados para Conventional
Resumo:
Inorganic metal oxide materials are generally poor proton conductors as conductivities are lower than 10-5-10-6 S.cm-1. However, by functionalising Silica, Zirconia or Titania, proton conduction increases by up to 5 orders of magnitude. Hence, functionalised nanomaterials are becoming very competitive against conventional electrolyte materials such as Nafion. In this work, sol-gel processes are employed to produce silica phosphate, zirconia phosphate and titania phosphate functionalised nanoparticles. Furthermore, conductivities at hydrate conditions are investigated, and nanoparticle formation and functionalisation effects on proton conductivity are discussed. Results show conductivities up to 10-1 S.cm-1 (95% RH). Proton conduction increases with the functionalisation content, however heat treatment of nanoparticles locks the functionality in the crystal phase, thus inhibiting proton conduction. Controlling the mesopore phase allows for high proton conduction at hydrated conditions, clearly indicating facilitated ion transport through the pore channels.
Resumo:
Commercial Nafion® 117 membranes were successfully modified by in-situ reactions (sol-gel of TEOS and/or polymerization of aniline) within Nafion structures. Water-methanol permeability and proton conductivity were investigated in order to determine the potential performance of these membranes for DMFC systems. Silica-polyaniline modification resulted in 84% methanol crossover reduction, from 2.45x10^-5 cm2.s^-1 for conventional Nafion membranes to 3.71x10^-6 cm2.s^-1 for the modified silica-polyaniline composite membrane at 75 degrees C. In addition, conductivity was not hindered, as the polyaniline-Nafion membrane increased from 12.2 to 15 mS.cm^-1 as compared to Nafion, while a reduction of 11% was observed for silica-polyaniline-Nafion composite membrane. The results in this work strongly suggest the potential of polyaniline nanocomposites to enhance the performance of DMFCs.
Resumo:
Weakly branched silica films formed by the two-step sol-gel process allow for the formation of high selectivity membranes for gas separation. 29Si NMR and gas permeation showed that reduced crosslinking leads to He/CH4 selectivity improvement from 300 to 1000. Applied in membrane reactor for cyclohexane conversion to benzene, conversions were achieved at 14 fold higher than a conventional reactor at 250°C. Hydrothermal stability studies showed that carbon templating of silica is required for hydrothermally stable membranes. From our work it was shown that with correct application of chemistry, practical membrane systems can be built to suit gas separation (e. g. hydrogen fuel) and reactor systems.
Resumo:
Stalker (AIAA Paper 87-0403) has suggested that, by ejecting molecules directly upstream from the entire face of a satellite, it is possible to reduce the drag on a satellite in low-Earth orbit and hence maintain orbit with a total fuel mass (for forward ejection and conventional reaction rockets) less than the typical mass requirements of conventional rockets. An analytical analysis is presented here, as well as Monte Carlo simulations. These indicate that to reduce the overall drag on the satellite significantly, collisions between the freestream and ejected molecules must occur at least two satellite diameters upstream. This can be achieved if the molecules are ejected far upstream from the satellite’s surface through a sting that projects forward from the satellite. Using some estimates of what would be feasible sting arrangements, we find that the drag on the satellite can be reduced to such an extent that the satellite’s orbit can be maintained with a total fuel mass of less than 60% of that required for reaction rockets alone. Upstream ejection is effective in reducing the drag for freestream Knudsen numbers less than approximately 250, but not otherwise.
Resumo:
The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.
Resumo:
Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars, being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.
Resumo:
We describe a novel method of fabricating atom chips that are well suited to the production and manipulation of atomic Bose–Einstein condensates. Our chip was created using a silver foil and simple micro-cutting techniques without the need for photolithography. It can sustain larger currents than conventional chips, and is compatible with the patterning of complex trapping potentials. A near pure Bose–Einstein condensate of 4 × 104 87Rb atoms has been created in a magnetic microtrap formed by currents through wires on the chip. We have observed the fragmentation of atom clouds in close proximity to the silver conductors. The fragmentation has different characteristic features to those seen with copper conductors.
Resumo:
Despite many successes of conventional DNA sequencing methods, some DNAs remain difficult or impossible to sequence. Unsequenceable regions occur in the genomes of many biologically important organisms, including the human genome. Such regions range in length from tens to millions of bases, and may contain valuable information such as the sequences of important genes. The authors have recently developed a technique that renders a wide range of problematic DNAs amenable to sequencing. The technique is known as sequence analysis via mutagenesis (SAM). This paper presents a number of algorithms for analysing and interpreting data generated by this technique.
Resumo:
Despite the success of conventional Sanger sequencing, significant regions of many genomes still present major obstacles to sequencing. Here we propose a novel approach with the potential to alleviate a wide range of sequencing difficulties. The technique involves extracting target DNA sequence from variants generated by introduction of random mutations. The introduction of mutations does not destroy original sequence information, but distributes it amongst multiple variants. Some of these variants lack problematic features of the target and are more amenable to conventional sequencing. The technique has been successfully demonstrated with mutation levels up to an average 18% base substitution and has been used to read previously intractable poly(A), AT-rich and GC-rich motifs.
Impact of Commercial Search Engines and International Databases on Engineering Teaching and Research
Resumo:
For the last three decades, the engineering higher education and professional environments have been completely transformed by the "electronic/digital information revolution" that has included the introduction of personal computer, the development of email and world wide web, and broadband Internet connections at home. Herein the writer compares the performances of several digital tools with traditional library resources. While new specialised search engines and open access digital repositories may fill a gap between conventional search engines and traditional references, these should be not be confused with real libraries and international scientific databases that encompass textbooks and peer-reviewed scholarly works. An absence of listing in some Internet search listings, databases and repositories is not an indication of standing. Researchers, engineers and academics should remember these key differences in assessing the quality of bibliographic "research" based solely upon Internet searches.
Resumo:
We have used the DSMC method to determine contamination (impingement of atmospheric molecules) and the aerodynamic forces on a cold satellite when a protective “purge gas” is ejected from a sting protruding ahead of the satellite. Forward ejection of the purge gas provides the greatest protection for a given mass of purge gas and the aerodynamic drag can be significantly reduced, thus compensating for the backward reaction from the forward ejection. If the purge gas is ejected backward from the sting (towards the satellite) the ejection provides thrust and the net retarding force can be reduced to zero. Contamination can be reduced and the mass of purging gas is less than the mass of conventional rocket propellant required to maintain the orbit of an unprotected satellite.
Resumo:
Force measurement in hypervelocity expansion tubes is not possible using conventional techniques. The stress wave force balance technique can be applied in expansion tubes to measure forces despite the short test times involved. This paper presents a new calibration technique for multiple-component stress wave force balances where an impulse response created using a load distribution is required and no orthogonal surfaces on the model exist.. This new technique relies on the tensorial superposition of single-component impulse responses analogous to the vectorial superposition of the calibration loads. The example presented here is that of a scale model of the Mars Pathfinder, but the technique is applicable to any geometry and may be useful for cases where orthogonal loads cannot be applied.
Resumo:
In this paper, a progressive asymptotic approach procedure is presented for solving the steady-state Horton-Rogers-Lapwood problem in a fluid-saturated porous medium. The Horton-Rogers-Lapwood problem possesses a bifurcation and, therefore, makes the direct use of conventional finite element methods difficult. Even if the Rayleigh number is high enough to drive the occurrence of natural convection in a fluid-saturated porous medium, the conventional methods will often produce a trivial non-convective solution. This difficulty can be overcome using the progressive asymptotic approach procedure associated with the finite element method. The method considers a series of modified Horton-Rogers-Lapwood problems in which gravity is assumed to tilt a small angle away from vertical. The main idea behind the progressive asymptotic approach procedure is that through solving a sequence of such modified problems with decreasing tilt, an accurate non-zero velocity solution to the Horton-Rogers-Lapwood problem can be obtained. This solution provides a very good initial prediction for the solution to the original Horton-Rogers-Lapwood problem so that the non-zero velocity solution can be successfully obtained when the tilted angle is set to zero. Comparison of numerical solutions with analytical ones to a benchmark problem of any rectangular geometry has demonstrated the usefulness of the present progressive asymptotic approach procedure. Finally, the procedure has been used to investigate the effect of basin shapes on natural convection of pore-fluid in a porous medium. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
1 We have recently suggested the existence in the heart of a 'putative beta(4)-adrenoceptor' based on the cardiostimulant effects of non-conventional partial agonists, compounds that cause cardiostimulant effects at greater concentrations than those required to block beta(1)- and Bz-adrenoceptors. We sought to obtain further evidence by establishing and validating a radioligand binding assay for this receptor with (-)-[H-3]-CGP 12177A ((-)-4-(3-tertiarybutylamino-2-hydroxypropoxy) benzimidazol-2-one) in rat atrium. We investigated (-)-[H-3]-CGP 12177A for this purpose for two reasons, because it is a nonconventional partial agonist and also because it is a hydrophilic radioligand. 2 Increasing concentrations of(-)-[H-3]-CGP 12177A, in the absence or presence of 20 mu M (-)-CGP 12177A to define non-specific binding, resulted in a biphasic saturation isotherm. Low concentrations bound to beta(1)- and beta(2)-adrenoceptors (pK(D) 9.4+/-0.1, B-max 26.9+/-3.1 fmol mg(-1) protein) and higher concentrations bound to the 'putative beta(4)-adrenoceptor' (pK(D) 7.5+/-0.1, B-max 47.7+/-4.9 fmol mg(-1) protein). In other experiments designed to exclude beta(1)- and beta(2)-adrenoceptors, (-)-[H-3]-CGP 12177A (1-200 nM) binding in the presence of 500 nM (-)-propranolol was also saturable (pK(D) 7.6+/-0.1, B-max 50.8+/-7.4 fmol mg(-1) protein). 3 The non-conventional partial agonists (-)-CGP 12177A (pK(i) 7.3+/-0.2), (+/-)-cyanopindolol (pK(i) 7.6+/-0.2), (-)-pindolol (pK(i) 6.6+/-0.1) and (+)-carazolol (pk(i), 7.2+/-0.2) and the antagonist (-)-bupranolol (pK(i) 6.6+/-0.2), all competed for (-)-[H-3]-CGP 12177A binding in the presence of 500 nM (-)-propranolol at the 'putative beta(4)-adrenoceptor', with affinities closely similar to potencies and affinities determined in organ bath studies. 4 The catecholamines competed with (-)-[H-3]-CGP 12177A at the 'putative beta(4)-adrenoceptor' in a stereoselective manner, (-)-noradrenaline (pK(iH) 6.3 +/- 0.3, pK(i), 3.5 +/- 0.1), (-)-adrenaline (pK(iH) 6.5 +/- 0.2, pK(iL) 2.9 +/- 0.1), (-)-isoprenaline (pK(iH) 6.2 +/- 0.5, pK(iL) 3.3 +/- 0.1), (+)-isoprenaline (pK(i) < 1.7), (-)-R0363 ((-)-(1-(3,4-dimethoxyphenethylamino)-3-(3,4-dihydroxyphenoxy)-2-propranol)oxalate, pK(i) 5.5 +/- 0.1). 5 The inclusion of guanosine 5-triphosphate (GTP 0.1 mM) had no effect on binding of (-)-CGP 12177A or (-)-isoprenaline to the 'putative beta(4)-adrenoceptor'. In competition binding studies, (-)-CGP 12177A competed with (-)-[H-3]-CGP 12177A for one receptor state in the absence (pK(i) 7.3 +/- 0.2) or presence of GTP (pK(i) 7.3 +/- 0.2). (-)-Isoprenaline competed with (-)-[H-3]-CGP 12177A for two states in the absence (pK(iH) 6.6 +/- 0.3, pK(iL) 3.5 +/- 0.1; % H 25 +/- 7) or presence of GTP (pK(iH) 6.2 +/- 0.5, pK(iL) 3.4 +/- 0.1; % H 37 +/- 6). In contrast, at beta(1)-adrenoceptors, GTP stabilized the low affinity state of the receptor for (-)-isoprenaline. 6 The specificity of binding to the 'putative beta(4)-adrenoceptor' was tested with compounds active at other receptors. High concentrations of the beta(4)-adrenoceptor agonists, BRL 37344 ((RR + SS)[4-[2-[[2-(3-chlorophenyl)-2-hydroxy -ethyl]amino]propyl]phenoxy]acetic acid, 6 mu M), SR 58611A (ethyl((7S)-7-[(2R)-2-(3-chlorophenyl)-2-hydroxyethylamino]-5,6,7,8-tetrahydronaphtyl-2-yloxy) acetate hydrochloride, 6 mu M), ZD 2079 ((+/-)-1-phenyl-2-(2-4-carboxymethylphenoxy)-ethylamino)ethan-1-ol, 60 mu M), CL 316243 (disodium (R,R)-5-[2-[2-(3-chlorophenyl)-2-hydroxyethyl-amino]propyl]- 1,3-benzodioxole-2,2-dicarboxylate, 60 mu M) and antagonist SR 59230A (3-(2-ethylphenoxy)-1-[(1S)-1,2,3,4-tetrahydronaphth-1-ylamino]-2S-2-propanol oxalate, 6 mu M) caused less than 22% inhibition of (-)-[H-3]-CGP 12177A binding in the presence of 500 nM (-)-propranolol. Histamine (1 mM), atropine (1 mu M), phentolamine (10 mu M), 5-HT(100 mu M) and the 5-HT4 receptor antagonist SE 207710 ((1-butyl-4-piperidinyl)-methyl 8-amino-7-iodo-1 ,4-benzodioxan-5-carboxylate, 10 nM) caused less than 26% inhibition of binding. 7 Non-conventional partial agonists, the antagonist (-)-bupranolol and catecholamines all competed for (-)-[H-3]-CGP 12177A binding in the absence of (-)-propranolol at beta(1)-adrenoceptors, with affinities (pK(i)) ranging from 1.6-3.6 log orders greater than at the 'putative beta(4)-adrenoceptor'. 8 We have established and validated a radioligand binding assay in rat atrium for the 'putative beta(4)-adrenoceptor' which is distinct from beta(1)-, beta(2)- and beta(3)-adrenoceptors. The stereoselective interaction with the catecholamines provides further support for the classification of the receptor as 'putative beta(4)-adrenoceptor'.
Resumo:
The conventional analysis for the estimation of the tortuosity factor for transport in porous media is modified here to account for the effect of pore aspect ratio. Structural models of the porous medium are also constructed for calculating the aspect ratio as a function of porosity. Comparison of the model predictions with the extensive data of Currie (1960) for the effective diffusivity of hydrogen in packed beds shows good agreement with a network model of randomly oriented intersecting pores for porosities upto about 50 percent, which is the region of practical interest. The predictions based on this network model are also found to be in better agreement with the data of Currie than earlier expressions developed for unconsolidated and grainy media.