993 resultados para Continuous Operating Reference Stations
Resumo:
Diagnostic reference levels (DRLs) were established for 21 indication-based CT examinations for adults in Switzerland. One hundred and seventy-nine of 225 computed tomography (CT) scanners operated in hospitals and private radiology institutes were audited on-site and patient doses were collected. For each CT scanner, a correction factor was calculated expressing the deviation of the measured weighted computed tomography dose index (CTDI) to the nominal weighted CTDI as displayed on the workstation. Patient doses were corrected by this factor providing a realistic basis for establishing national DRLs. Results showed large variations in doses between different radiology departments in Switzerland, especially for examinations of the petrous bone, pelvis, lower limbs and heart. This indicates that the concept of DRLs has not yet been correctly applied for CT examinations in clinical routine. A close collaboration of all stakeholders is mandatory to assure an effective radiation protection of patients. On-site audits will be intensified to further establish the concept of DRLs in Switzerland.
Resumo:
Interior crises are understood as discontinuous changes of the size of a chaotic attractor that occur when an unstable periodic orbit collides with the chaotic attractor. We present here numerical evidence and theoretical reasoning which prove the existence of a chaos-chaos transition in which the change of the attractor size is sudden but continuous. This occurs in the Hindmarsh¿Rose model of a neuron, at the transition point between the bursting and spiking dynamics, which are two different dynamic behaviors that this system is able to present. Moreover, besides the change in attractor size, other significant properties of the system undergoing the transitions do change in a relevant qualitative way. The mechanism for such transition is understood in terms of a simple one-dimensional map whose dynamics undergoes a crossover between two different universal behaviors
Resumo:
Background: Urine is still the matrix of choice to fight against doping, because it can be collected non-invasively during anti-doping tests. Most of the World Anti-Doping Agency's accredited laboratories have more than 20 years experience in analyzing this biological fluid and the majority of the compounds listed in the 2010 Prohibited List - International Standard are eliminated through the urinary apparatus. Storing and transporting urine samples for doping analyses does not include a specific protocol to prevent microbial and thermal degradation. The use of a rapid and reliable screening method could enable determine reference intervals for urine specimens in doping control samples and evaluate notably the prevalence of microbial contamination known to be responsible for the degradation of chemical substances in urine.Methods: The Sysmex(R) UF-500i is a recent urine flow cytometer analyzer capable of quantifying BACT and other urinary particles such as RBC, WBC, EC, DEBRIS, CAST, PATH. CAST, YLC, SRC as well as measuring urine conductivity. To determine urine anti-doping reference intervals, 501 samples received in our laboratory over a period of two months were submitted to an immediate examination. All samples were collected and then transported at room temperature. Analysis of variance was performed to test the effects of factors such as gender, test type [in-competition, out-of-competition] and delivery time.Results: The data obtained showed that most of the urine samples were highly contaminated with bacteria. The other urine particles were also very different according to the factors.Conclusions: The Sysmex(R) UF-500i was capable of providing a snapshot of urine particles present in the samples at the time of the delivery to the laboratory. These particles, BACT in particular, gave a good idea of the possible microbial degradation which had and/or could have occurred in the sample. This information could be used as the first quality control set up in WADA (World Anti-Doping Agency) accredited laboratories to determine if steroid profiles, endogenous and prohibited substances have possibly been altered. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%).
Resumo:
Cognitive radio is a wireless technology aimed at improvingthe efficiency use of the radio-electric spectrum, thus facilitating a reductionin the load on the free frequency bands. Cognitive radio networkscan scan the spectrum and adapt their parameters to operate in the unoccupiedbands. To avoid interfering with licensed users operating on a givenchannel, the networks need to be highly sensitive, which is achieved byusing cooperative sensing methods. Current cooperative sensing methodsare not robust enough against occasional or continuous attacks. This articleoutlines a Group Fusion method that takes into account the behavior ofusers over the short and long term. On fusing the data, the method is basedon giving more weight to user groups that are more unanimous in their decisions.Simulations have been performed in a dynamic environment withinterferences. Results prove that when attackers are present (both reiterativeor sporadic), the proposed Group Fusion method has superior sensingcapability than other methods.
Resumo:
OBJECTIVE: To determine the incidence and risk factors of electrical seizures and other electrical epileptic activity using continuous EEG (cEEG) in patients with acute stroke. METHODS: One hundred consecutive patients with acute stroke admitted to our stroke unit underwent cEEG using 10 electrodes. In addition to electrical seizures, repetitive focal sharp waves (RSHWs), repetitive focal spikes (RSPs), and periodic lateralized epileptic discharges (PLEDs) were recorded. RESULTS: In the 100 patients, cEEG was recorded for a mean duration of 17 hours 34 minutes (range 1 hour 12 minutes to 37 hours 10 minutes). Epileptic activity occurred in 17 patients and consisted of RSHWs in seven, RSPs in seven, and PLEDs in three. Electrical seizures occurred in two patients. On univariate Cox regression analysis, predictors for electrical epileptic activity were stroke severity (high score on the National Institutes of Health Stroke Scale) (hazard ratio [HR] 1.12; p = 0.002), cortical involvement (HR 5.71; p = 0.021), and thrombolysis (HR 3.27; p = 0.040). Age, sex, stroke type, use of EEG-modifying medication, and cardiovascular risk factors were not predictors of electrical epileptic activity. On multivariate analysis, stroke severity was the only independent predictor (HR 1.09; p = 0.016). CONCLUSION: In patients with acute stroke, electrical epileptic activity occurs more frequently than previously suspected.
Resumo:
La radio cognitiva es una tecnología inalámbrica propuesta para usar eficientemente los recursos del espectro radioeléctrico permitiendo así reducir la carga existente en las bandas de frecuencia de uso libre.Las redes de radio cognitiva son capaces de escanear el espectro y adaptar sus parámetros para operar en las bandas no ocupadas. Para evitar interferir con usuarios con licencia que operan en un determinado canal, la sensibilidad de las redes tiene que ser muy alta. Ello se consigue con métodos de detección cooperativos. Los métodos de detección cooperativa actuales tienen una carencia de robustez ya sea frente a ataques puntuales o continuos.En este artículo presentamos un método de fusión por grupos que tiene presente el comportamiento de los usuarios a corto y largo plazo. Al realizar la fusión de los datos, el método se basa en dar mayor peso a los grupos de usuarios con mayor unanimidad en sus decisiones.Los resultados de las simulaciones prueban que en presencia de atacantes el método de fusión por grupos propuesto consigue una detección superior a otros métodos, cumpliendo los requisitos de sensibilidad mínimos de las redes de radio cognitiva incluso con un 12 de usuarios reiteradamente maliciosos o un 10 de atacantes puntuales.
Resumo:
Surgery is the cornerstone of ovarian cancer treatment and maximal cytoreduction is important. In the early 1980’s primary surgical treatment of ovarian cancer was performed in over 80 hospitals in Finland. The significance of the operative volume of the hospital, of the training of the surgeons and of centralization of surgical treatment has been widely discussed. The aim of the present study was to evaluate the outcome of surgical treatment of ovarian cancer in different hospital categories retrospectively and prospectively, and to analyze if any differences are reflected in survival. The retrospective study included 3851 ovarian cancer patients operated between 1983 and 1994 in Finland. The data was analyzed according to hospital category (university, central, and other) and by quartiles of the hospital operative volume. The results showed that patients operated in the highest operative volume hospitals had the best relative survival. When stratifying the analysis by the period of diagnosis (1983-1988 and 1989-1994), the university hospitals improved their performance the most. The prospective part of the thesis was initiated in 1999 and included 307 patients with invasive ovarian cancer and 65 patients with an ovarian borderline tumor. The baseline and 5-year surveys used a questionnaire that was filled in by the operating surgeons. For analysis of the 5-year followup data, the hospitals were divided into three categories (<10, 10-20, or >20 patients operated in 1999). The effect of the surgical volume was analyzed also as a continuous variable (1-47 operations per year). In university hospitals, pelvic lymphadenectomy was performed in 88 %, and para-aortic lymphadenectomy in 73 %, of the patients with stage I disease. The corresponding figures ranged from 11 % to 21 % in the other hospitals. For stage III ovarian cancer patients operated by gynecological oncologists, the estimated odds ratio for no macroscopic residual tumor was 3.0 times higher (95 % CI 1.2-7.5) than for those operated by general gynecologists. In the university and other hospitals 82% of the patients received platinum-based chemotherapy. Platinum + taxane combination was given to 63 % of the patients in the university and in 49 % in the other hospitals (p = 0.0763). Only a minority of the patients with tumors of borderline malignancy were staged according to recommendations, most often multiple peritoneal biopsies and omentectomy were neglected. FIGO stage, patient age, and residual tumor were independent prognostic factors of cancer-specific 5-year survival. A higher hospital operative volume was also a significant prognostic factor for better cancer-specific survival (p = 0.036) and disease-free survival (p = 0.048). In conclusion, ovarian cancer patients operated in high-volume university hospitals were more often optimally debulked and had a significantly better cancer-specific survival than patients operated in other hospitals. These results favor centralization of primary surgical treatment of ovarian cancer.
Resumo:
The application of adaptive antenna techniques to fixed-architecture base stations has been shown to offer wide-ranging benefits, including interference rejection capabilities or increased coverage and spectral efficiency.Unfortunately, the actual implementation ofthese techniques to mobile communication scenarios has traditionally been set back by two fundamental reasons. On one hand, the lack of flexibility of current transceiver architectures does not allow for the introduction of advanced add-on functionalities. On the other hand, theoften oversimplified models for the spatiotemporal characteristics of the radio communications channel generally give rise toperformance predictions that are, in practice, too optimistic. The advent of software radio architectures represents a big step toward theintroduction of advanced receive/transmitcapabilities. Thanks to their inherent flexibilityand robustness, software radio architecturesare the appropriate enabling technology for theimplementation of array processing techniques.Moreover, given the exponential progression ofcommunication standards in coexistence andtheir constant evolution, software reconfigurabilitywill probably soon become the only costefficientalternative for the transceiverupgrade. This article analyzes the requirementsfor the introduction of software radio techniquesand array processing architectures inmultistandard scenarios. It basically summarizesthe conclusions and results obtained withinthe ACTS project SUNBEAM,1 proposingalgorithms and analyzing the feasibility ofimplementation of innovative and softwarereconfigurablearray processing architectures inmultistandard settings.
Resumo:
The continuous wavelet transform is obtained as a maximumentropy solution of the corresponding inverse problem. It is well knownthat although a signal can be reconstructed from its wavelet transform,the expansion is not unique due to the redundancy of continuous wavelets.Hence, the inverse problem has no unique solution. If we want to recognizeone solution as "optimal", then an appropriate decision criterion hasto be adopted. We show here that the continuous wavelet transform is an"optimal" solution in a maximum entropy sense.
Resumo:
A general criterion for the design of adaptive systemsin digital communications called the statistical reference criterionis proposed. The criterion is based on imposition of the probabilitydensity function of the signal of interest at the outputof the adaptive system, with its application to the scenario ofhighly powerful interferers being the main focus of this paper.The knowledge of the pdf of the wanted signal is used as adiscriminator between signals so that interferers with differingdistributions are rejected by the algorithm. Its performance isstudied over a range of scenarios. Equations for gradient-basedcoefficient updates are derived, and the relationship with otherexisting algorithms like the minimum variance and the Wienercriterion are examined.