952 resultados para Constructivism series.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional and 3D quantitative structure-activity relationships studies were performed on a series of diarylpyridines that acts as cannabinoid receptor ligands by means of hologram quantitative structure-activity relationships and comparative molecular field analysis methods. The quantitative structure-activity relationships models were built using a data set of 52 CB1 ligands that can be used as anti-obesity agents. Significant correlation coefficients (hologram quantitative structure-activity relationships: r 2 = 0.91, q 2 = 0.78; comparative molecular field analysis: r 2 = 0.98, q 2 = 0.77) were obtained, indicating the potential of these 2D and 3D models for untested compounds. The models were then used to predict the potency of an external test set, and the predicted (calculated) values are in good agreement with the experimental results. The final quantitative structure-activity relationships models, along with the information obtained from 2D contribution maps and 3D contour maps, obtained in this study are useful tools for the design of novel CB1 ligands with improved anti-obesity potency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes empirically the effect of crude oil price change on the economic growth of Indian-Subcontinent (India, Pakistan and Bangladesh). We use a multivariate Vector Autoregressive analysis followed by Wald Granger causality test and Impulse Response Function (IRF). Wald Granger causality test results show that only India’s economic growth is significantly affected when crude oil price decreases. Impact of crude oil price increase is insignificantly negative for all three countries during first year. In second year, impact is negative but smaller than first year for India, negative but larger for Bangladesh and positive for Pakistan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work concerns forecasting with vector nonlinear time series models when errorsare correlated. Point forecasts are numerically obtained using bootstrap methods andillustrated by two examples. Evaluation concentrates on studying forecast equality andencompassing. Nonlinear impulse responses are further considered and graphically sum-marized by highest density region. Finally, two macroeconomic data sets are used toillustrate our work. The forecasts from linear or nonlinear model could contribute usefulinformation absent in the forecasts form the other model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis consists of four manuscripts in the area of nonlinear time series econometrics on topics of testing, modeling and forecasting nonlinear common features. The aim of this thesis is to develop new econometric contributions for hypothesis testing and forecasting in these area. Both stationary and nonstationary time series are concerned. A definition of common features is proposed in an appropriate way to each class. Based on the definition, a vector nonlinear time series model with common features is set up for testing for common features. The proposed models are available for forecasting as well after being well specified. The first paper addresses a testing procedure on nonstationary time series. A class of nonlinear cointegration, smooth-transition (ST) cointegration, is examined. The ST cointegration nests the previously developed linear and threshold cointegration. An Ftypetest for examining the ST cointegration is derived when stationary transition variables are imposed rather than nonstationary variables. Later ones drive the test standard, while the former ones make the test nonstandard. This has important implications for empirical work. It is crucial to distinguish between the cases with stationary and nonstationary transition variables so that the correct test can be used. The second and the fourth papers develop testing approaches for stationary time series. In particular, the vector ST autoregressive (VSTAR) model is extended to allow for common nonlinear features (CNFs). These two papers propose a modeling procedure and derive tests for the presence of CNFs. Including model specification using the testing contributions above, the third paper considers forecasting with vector nonlinear time series models and extends the procedures available for univariate nonlinear models. The VSTAR model with CNFs and the ST cointegration model in the previous papers are exemplified in detail,and thereafter illustrated within two corresponding macroeconomic data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to investigate the relation between foreign direct investment (FDI) and per capita gross domestic product (GDP) in Pakistan. The study is based on a basic Cobb-Douglas production function. Population over age 15 to 64 is used as a proxy for labor in the investigation. The other variables used are gross capital formation, technological gap and a dummy variable measuring among other things political stability. We find positive correlation between GDP per capita in Pakistan and two variables, FDI and population over age 15 to 64. The GDP gap (gap between GDP of USA and GDP of Pakistan) is negatively correlated with GDP per capita as expected. Political instability, economic crisis, wars and polarization in the society have no significant impact on GDP per capita in the long run.