968 resultados para Constrained Riemann problem
Resumo:
This Forum challenges and problematizes the term incomplete acquisition, which has been widely used to describe the state of competence of heritage speaker (HS) bilinguals for well over a decade (see, e.g., Montrul, 2008). It is suggested and defended that HS competence, while often different from monolingual peers, is in fact not incomplete (given any reasonable definition by the word incomplete), but simply distinct for reasons related to the realities of their environment.
Resumo:
Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV
Resumo:
A study of the use of hybrid physical appearance both to signal and to explore the disputed paternity of Alexander the Great throughout its vernacular French tradition. The article compares the 'child of Babylon' portent and Alexander's son Alior in the twelfth-century French "Roman d'Alexandre" poem cycle, and a fifteenth-century prose adaptation of it.
Resumo:
Problem-Based Learning, despite recent controversies about its effectiveness, is used extensively as a teaching method throughout higher education. In meteorology, there has been little attempt to incorporate Problem-Based Learning techniques into the curriculum. Motivated by a desire to enhance the reflective engagement of students within a current field course module, this project describes the implementation of two test Problem-Based Learning activities and testing and improvement using several different and complementary means of evaluation. By the end of a 2-year program of design, implementation, testing, and reflection and re-evaluation, two robust, engaging activities have been developed that provide an enhanced and diverse learning environment in the field course. The results suggest that Problem-Based Learning techniques would be a useful addition to the meteorology curriculum and suggestions for courses and activities that may benefit from this approach are included in the conclusions.
Resumo:
In a series of papers, Killworth and Blundell have proposed to study the effects of a background mean flow and topography on Rossby wave propagation by means of a generalized eigenvalue problem formulated in terms of the vertical velocity, obtained from a linearization of the primitive equations of motion. However, it has been known for a number of years that this eigenvalue problem contains an error, which Killworth was prevented from correcting himself by his unfortunate passing and whose correction is therefore taken up in this note. Here, the author shows in the context of quasigeostrophic (QG) theory that the error can ulti- mately be traced to the fact that the eigenvalue problem for the vertical velocity is fundamentally a non- linear one (the eigenvalue appears both in the numerator and denominator), unlike that for the pressure. The reason that this nonlinear term is lacking in the Killworth and Blundell theory comes from neglecting the depth dependence of a depth-dependent term. This nonlinear term is shown on idealized examples to alter significantly the Rossby wave dispersion relation in the high-wavenumber regime but is otherwise irrelevant in the long-wave limit, in which case the eigenvalue problems for the vertical velocity and pressure are both linear. In the general dispersive case, however, one should first solve the generalized eigenvalue problem for the pressure vertical structure and, if needed, diagnose the vertical velocity vertical structure from the latter.
Resumo:
The question of what explains variation in expenditures on Active Labour Market Programs (ALMPs) has attracted significant scholarship in recent years. Significant insights have been gained with respect to the role of employers, unions and dual labour markets, openness, and partisanship. However, there remain significant disagreements with respects to key explanatory variables such the role of unions or the impact of partisanship. Qualitative studies have shown that there are both good conceptual reasons as well as historical evidence that different ALMPs are driven by different dynamics. There is little reason to believe that vastly different programs such as training and employment subsidies are driven by similar structural, interest group or indeed partisan dynamics. The question is therefore whether different ALMPs have the same correlation with different key explanatory variables identified in the literature? Using regression analysis, this paper shows that the explanatory variables identified by the literature have different relation to distinct ALMPs. This refinement adds significant analytical value and shows that disagreements are at least partly due to a dependent variable problem of ‘over-aggregation’.
Resumo:
The problem of technology obsolescence in information intensive businesses (software and hardware no longer being supported and replaced by improved and different solutions) and a cost constrained market can severely increase costs and operational, and ultimately reputation risk. Although many businesses recognise technological obsolescence, the pervasive nature of technology often means they have little information to identify the risk and location of pending obsolescence and little money to apply to the solution. This paper presents a low cost structured method to identify obsolete software and the risk of their obsolescence where the structure of a business and its supporting IT resources can be captured, modelled, analysed and the risk to the business of technology obsolescence identified to enable remedial action using qualified obsolescence information. The technique is based on a structured modelling approach using enterprise architecture models and a heatmap algorithm to highlight high risk obsolescent elements. The method has been tested and applied in practice in three consulting studies carried out by Capgemini involving four UK police forces. However the generic technique could be applied to any industry based on plans to improve it using ontology framework methods. This paper contains details of enterprise architecture meta-models and related modelling.
Resumo:
The problem of technology obsolescence in information intensive businesses (software and hardware no longer being supported and replaced by improved and different solutions) and a cost constrained market can severely increase costs and operational, and ultimately reputation risk. Although many businesses recognise technological obsolescence, the pervasive nature of technology often means they have little information to identify the risk and location of pending obsolescence and little money to apply to the solution. This paper presents a low cost structured method to identify obsolete software and the risk of their obsolescence where the structure of a business and its supporting IT resources can be captured, modelled, analysed and the risk to the business of technology obsolescence identified to enable remedial action using qualified obsolescence information. The technique is based on a structured modelling approach using enterprise architecture models and a heatmap algorithm to highlight high risk obsolescent elements. The method has been tested and applied in practice in two consulting studies carried out by Capgemini involving three UK police forces. However the generic technique could be applied to any industry based on plans to improve it using ontology framework methods. This paper contains details of enterprise architecture meta-models and related modelling.
Resumo:
The response of the Southern Ocean to a repeating seasonal cycle of ozone loss is studied in two coupled climate models and found to comprise both fast and slow processes. The fast response is similar to the inter-annual signature of the Southern Annular Mode (SAM) on Sea Surface Temperature (SST), on to which the ozone-hole forcing projects in the summer. It comprises enhanced northward Ekman drift inducing negative summertime SST anomalies around Antarctica, earlier sea ice freeze-up the following winter, and northward expansion of the sea ice edge year-round. The enhanced northward Ekman drift, however, results in upwelling of warm waters from below the mixed layer in the region of seasonal sea ice. With sustained bursts of westerly winds induced by ozone-hole depletion, this warming from below eventually dominates over the cooling from anomalous Ekman drift. The resulting slow-timescale response (years to decades) leads to warming of SSTs around Antarctica and ultimately a reduction in sea-ice cover year-round. This two-timescale behavior - rapid cooling followed by slow but persistent warming - is found in the two coupled models analysed, one with an idealized geometry, the other a complex global climate model with realistic geometry. Processes that control the timescale of the transition from cooling to warming, and their uncertainties are described. Finally we discuss the implications of our results for rationalizing previous studies of the effect of the ozone-hole on SST and sea-ice extent. %Interannual variability in the Southern Annular Mode (SAM) and sea ice covary such that an increase and southward shift in the surface westerlies (a positive phase of the SAM) coincides with a cooling of Sea Surface Temperature (SST) around 70-50$^\circ$S and an expansion of the sea ice cover, as seen in observations and models alike. Yet, in modeling studies, the Southern Ocean warms and sea ice extent decreases in response to sustained, multi-decadal positive SAM-like wind anomalies driven by 20th century ozone depletion. Why does the Southern Ocean appear to have disparate responses to SAM-like variability on interannual and multidecadal timescales? Here it is demonstrated that the response of the Southern Ocean to ozone depletion has a fast and a slow response. The fast response is similar to the interannual variability signature of the SAM. It is dominated by an enhanced northward Ekman drift, which transports heat northward and causes negative SST anomalies in summertime, earlier sea ice freeze-up the following winter, and northward expansion of the sea ice edge year round. The enhanced northward Ekman drift causes a region of Ekman divergence around 70-50$^\circ$S, which results in upwelling of warmer waters from below the mixed layer. With sustained westerly wind enhancement in that latitudinal band, the warming due to the anomalous upwelling of warm waters eventually dominates over the cooling from the anomalous Ekman drift. Hence, the slow response ultimately results in a positive SST anomaly and a reduction in the sea ice cover year round. We demonstrate this behavior in two models: one with an idealized geometry and another, more detailed, global climate model. However, the models disagree on the timescale of transition from the fast (cooling) to the slow (warming) response. Processes that controls this transition and their uncertainties are discussed.
Resumo:
We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.
Resumo:
Incomplete understanding of three aspects of the climate system—equilibrium climate sensitivity, rate of ocean heat uptake and historical aerosol forcing—and the physical processes underlying them lead to uncertainties in our assessment of the global-mean temperature evolution in the twenty-first century1,2. Explorations of these uncertainties have so far relied on scaling approaches3,4, large ensembles of simplified climate models1,2, or small ensembles of complex coupled atmosphere–ocean general circulation models5,6 which under-represent uncertainties in key climate system properties derived from independent sources7–9. Here we present results from a multi-thousand-member perturbed-physics ensemble of transient coupled atmosphere–ocean general circulation model simulations. We find that model versions that reproduce observed surface temperature changes over the past 50 years show global-mean temperature increases of 1.4–3 K by 2050, relative to 1961–1990, under a mid-range forcing scenario. This range of warming is broadly consistent with the expert assessment provided by the Intergovernmental Panel on Climate Change Fourth Assessment Report10, but extends towards larger warming than observed in ensemblesof-opportunity5 typically used for climate impact assessments. From our simulations, we conclude that warming by the middle of the twenty-first century that is stronger than earlier estimates is consistent with recent observed temperature changes and a mid-range ‘no mitigation’ scenario for greenhouse-gas emissions.
Resumo:
In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context.