957 resultados para Constant-pressure conditions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive an easy-to-compute approximate bound for the range of step-sizes for which the constant-modulus algorithm (CMA) will remain stable if initialized close to a minimum of the CM cost function. Our model highlights the influence, of the signal constellation used in the transmission system: for smaller variation in the modulus of the transmitted symbols, the algorithm will be more robust, and the steady-state misadjustment will be smaller. The theoretical results are validated through several simulations, for long and short filters and channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive the Cramer-Rao Lower Bound (CRLB) for the estimation of initial conditions of noise-embedded orbits produced by general one-dimensional maps. We relate this bound`s asymptotic behavior to the attractor`s Lyapunov number and show numerical examples. These results pave the way for more suitable choices for the chaotic signal generator in some chaotic digital communication systems. (c) 2006 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postural control was studied when the subject was kneeling with erect trunk in a quiet posture and compared to that obtained during quiet standing. The analysis was based on the center of pressure motion in the sagittal plane (CPx), both in the time and in the frequency domains. One could assume that postural control during kneeling would be poorer than in standing because it is a less natural posture. This could cause a higher CPx variability. The power spectral density (PSD) of the CPx obtained from the experimental data in the kneeling position (KN) showed a significant decrease at frequencies below 0.3 Hz compared to upright (UP) (P < 0.01), which indicates less sway in KN. Conversely, there was an increase in fast postural oscillations (above 0.7 Hz) during KN compared to UP (P < 0.05). The root mean square (RMS) of the CPx was higher for UP (P < 0.01) while the mean velocity (MV) was higher during KN (P < 0.05). Lack of vision had a significant effect on the PSD and the parameters estimated from the CPx in both positions. We also sought to verify whether the changes in the PSD of the CPx found between the UP and KN positions were exclusively due to biomechanical factors (e.g., lowered center of gravity), or also reflected changes in the neural processes involved in the control of balance. To reach this goal, besides the experimental approach, a simple feedback model (a PID neural system, with added neural noise and controlling an inverted pendulum) was used to simulate postural sway in both conditions (in KN the pendulum was shortened, the mass and the moment of inertia were decreased). A parameter optimization method was used to fit the CPx power spectrum given by the model to that obtained experimentally. The results indicated that the changed anthropometric parameters in KN would indeed cause a large decrease in the power spectrum at low frequencies. However, the model fitting also showed that there were considerable changes also in the neural subsystem when the subject went from standing to kneeling. There was a lowering of the proportional and derivative gains and an increase in the neural noise power. Additional increases in the neural noise power were found also when the subject closed his eyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents improvement on a physical cardiovascular simulator (PCS) system. Intraventricular pressure versus intraventricular volume (PxV) loop was obtained to evaluate performance of a pulsatile chamber mimicking the human left ventricle. PxV loop shows heart contractility and is normally used to evaluate heart performance. In many heart diseases, the stroke volume decreases because of low heart contractility. This pathological situation must be simulated by the PCS in order to evaluate the assistance provided by a ventricular assist device (VAD). The PCS system is automatically controlled by a computer and is an auxiliary tool for VAD control strategies development. This PCS system is according to a Windkessel model where lumped parameters are used for cardiovascular system analysis. Peripheral resistance, arteries compliance, and fluid inertance are simulated. The simulator has an actuator with a roller screw and brushless direct current motor, and the stroke volume is regulated by the actuator displacement. Internal pressure and volume measurements are monitored to obtain the PxV loop. Left chamber internal pressure is directly obtained by pressure transducer; however, internal volume has been obtained indirectly by using a linear variable differential transformer, which senses the diaphragm displacement. Correlations between the internal volume and diaphragm position are made. LabVIEW integrates these signals and shows the pressure versus internal volume loop. The results that have been obtained from the PCS system show PxV loops at different ventricle elastances, making possible the simulation of pathological situations. A preliminary test with a pulsatile VAD attached to PCS system was made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The `biomimetic` approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD`s inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 mu m filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 degrees C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The `cardiomimetic` approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we studied the mixture of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), a commercial polymer, with monobasic potassium phosphate (KDP), a piezoelectric salt, as a possible novel material in the fabrication of a low cost, easy-to-make,flexible pressure sensing device. The mixture between KDP and PEDOT: PSS was painted in a flexible polyester substrate and dried. Afterwards, I x V curves were carried out. The samples containing KDP presented higher values of current in smaller voltages than the PEDOT: PSS without KDP. This can mean a change in the chain arrays. Other results showed that the material responds to directly applied pressure to the sample that can be useful to sensors fabrication. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Morphological alterations in leave of micropropagated pineapple plants cv. IAC Gomo-de-mel acclimatizated in different conditions of luminosity). Microprapagated plants usually show difficulties to adapt to ex vitro conditions, and many times are submitted to the rustication process to aim the reduction of all the impacts resulting from the environmental changes. Once the leaf and its annexes are important indicators of adaptability strategies of the plants to adverse environmental conditions, the objective of this work was to compare the leaf anatomy of pineapple cv. IAC Gomo-de-mel in vitro cultivated plants with microplants acclimatized in different conditions of luminosity, under mesh, with 50% of shading and directly exposed to sunlight, to verify the needed of rustication process on this cultivar. Evaluations of the leaf epidermis using light and electronic scanning microscopy showed an increase on scale density in both leaves surfaces of the ex vitro microplants, mainly related to the ones directly exposed to sunlight. Subsequent observations showed an increase on cuticle thickness, on wavy contours of epidermal cells, and on the distribution and quantity of mesophyll fibers, evidencing the light conditions interference in morphological characteristics of these microplants. These alterations had not harmed microplant development, showing that are not need of rustication stages on the acclimatization process of this cultivar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plantation spacing selection has the primary objective of assigning each tree enough space for maximum growth and best quality to be attained with a minimum cost. From the harvest standpoint, an increase in stand density directly implies a decrease of individual tree volume, reducing also harvester productive capacity. The objective of this research is to assess the effects of several initial spacings and arrangements in eucalyptus plantations on production capacity, operational capacity and costs of forest harvester. Real operational data were collected from two eucalypt plantations at different initial spacing of 6.0, 7.5, 9.0, 12 and 18 m(2) per tree. Simulation data were obtained from a forest harvester simulator. Using spacing (E), mean tree volume (MV), diameter at breast height (DBH) and height (H) values, a stepwise regression test procedure was run, and correlations computed in order to measure their participation in operational capacity. Operational costs were computed with an accounting method proposed by FAO. Mean tree volume (MV) explained 88% of forest harvester operational capacity. Spacing (E) affected 8.5% of harvester operational capacity; wider spacings were related to higher individual tree volumes. Harvesting operation costs were lower in wider spaced treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluations of the effect of the climatic conditions and of the intensity of forest management in the trunk of the Gmelina arborea Linn. Roxb. trees are restricted to its physical-mechanical properties and use. The present work has as objective to study the radial variations of the wood anatomy of the gmelina trees sampled in plantations of 30 sites in Costa Rica, characterized by two climatic conditions (tropical dry and humid) and three intensities of forest management (intensive, moderate and without management). The results of the analyses demonstrated the existence of radial variation of the different anatomical parameters, except for the fiber lumen diameter and multiple vessels in the wood of the gmelina trees. For the wood anatomical elements, fibers (width, lumen diameter, and length), vessels (multiple vessels, diameter and frequency) and radial parenchyma (height) relationships were observed with the climate (tropical humid and dry). The radial variations of the wood anatomical elements were, also, influenced by the management regimes of the gmelina trees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new strain of the parasitoid Trichogramma pretiosum, was collected in Rio Verde County, State of Goias, Central Brazil, and designated as T. pretiosum RV. This strain was then found to be the most effective one among several different strains of T. pretiosum tested in a parasitoid selection assay. Therefore, its biological characteristics and thermal requirements were studied, aiming at allowing its multiplication under controlled environmental conditions in the laboratory. The parasitoid was reared on eggs of Pseudoplusia includens and Anticarsia gemmatalis at different constant temperatures within an 18-32 degrees C temperature range. The number of annual generations of the parasitoid was also estimated at those temperatures. Results have shown that T. pretiosum RV developmental time, from egg to adult, was influenced by all temperatures tested within the range, varying from 6.8 to 20.3 days and 6.0 to 17.0 days on eggs of P. includens and A. gemmatalis, respectively. The emergence of T. pretiosum RV from eggs of A. gemmatalis was higher than 94% at all temperatures tested. When this variable was evaluated on eggs of P. includens, however, the figures were higher than that within the 18-30 degrees C range (more than 98%), and were also statistically higher than the emergence observed at 32 degrees C (90.2%). The sex ratio of the parasitoids emerged from eggs of A. gemmatalis decreased from 0.55 to 0.29 at 18-32 degrees C, respectively. However, for those emerged from eggs of P. includens, the sex ratio was similar (0.73, 0.72 and 0.71) at 20, 28 and 32 degrees C, respectively. The lower temperature threshold (Tb) and thermal constant (K) were 10.65 degrees C and 151.25 degree-days when the parasitoid was reared on eggs of P. includens; and 11.64 degrees C and 127.60 degree-days when reared on eggs of A. gemmatalis. The number of generations per month increased from 1.45 to 4.23 and from 1.49 to 4.79 when the parasitoid was reared on eggs of P. includens and A. gemmatalis, respectively, following the increases in the temperature. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grass reference evapotranspiration (ETo) is an important agrometeorological parameter for climatological and hydrological studies, as well as for irrigation planning and management. There are several methods to estimate ETo, but their performance in different environments is diverse, since all of them have some empirical background. The FAO Penman-Monteith (FAD PM) method has been considered as a universal standard to estimate ETo for more than a decade. This method considers many parameters related to the evapotranspiration process: net radiation (Rn), air temperature (7), vapor pressure deficit (Delta e), and wind speed (U); and has presented very good results when compared to data from lysimeters Populated with short grass or alfalfa. In some conditions, the use of the FAO PM method is restricted by the lack of input variables. In these cases, when data are missing, the option is to calculate ETo by the FAD PM method using estimated input variables, as recommended by FAD Irrigation and Drainage Paper 56. Based on that, the objective of this study was to evaluate the performance of the FAO PM method to estimate ETo when Rn, Delta e, and U data are missing, in Southern Ontario, Canada. Other alternative methods were also tested for the region: Priestley-Taylor, Hargreaves, and Thornthwaite. Data from 12 locations across Southern Ontario, Canada, were used to compare ETo estimated by the FAD PM method with a complete data set and with missing data. The alternative ETo equations were also tested and calibrated for each location. When relative humidity (RH) and U data were missing, the FAD PM method was still a very good option for estimating ETo for Southern Ontario, with RMSE smaller than 0.53 mm day(-1). For these cases, U data were replaced by the normal values for the region and Delta e was estimated from temperature data. The Priestley-Taylor method was also a good option for estimating ETo when U and Delta e data were missing, mainly when calibrated locally (RMSE = 0.40 mm day(-1)). When Rn was missing, the FAD PM method was not good enough for estimating ETo, with RMSE increasing to 0.79 mm day(-1). When only T data were available, adjusted Hargreaves and modified Thornthwaite methods were better options to estimate ETo than the FAO) PM method, since RMSEs from these methods, respectively 0.79 and 0.83 mm day(-1), were significantly smaller than that obtained by FAO PM (RMSE = 1.12 mm day(-1). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The model implicitly incorporates the effect of simultaneous pressure head and osmotic head on root water uptake, and does not require additional assumptions (additive or multiplicative) to derive the combined effect of water and salt stress. Simulation results showed that relative transpiration equals relative matric flux potential, which is defined as the matric flux potential calculated with an osmotic pressure head-dependent lower bound of integration, divided by the matric flux potential at the onset of limiting hydraulic conditions. In the falling rate phase, the osmotic head near the root surface was shown to increase in time due to decreasing root water extraction rates, causing a more gradual decline of relative transpiration than with water stress alone. Results furthermore show that osmotic stress effects on uptake depend on pressure head or water content, allowing a refinement of the approach in which fixed reduction factors based on the electrical conductivity of the saturated soil solution extract are used. One of the consequences is that osmotic stress is predicted to occur in situations not predicted by the saturation extract analysis approach. It is also shown that this way of combining salinity and water as stressors yields results that are different from a purely multiplicative approach. An analytical steady state solution is presented to calculate the solute content at the root surface, and compared with the outputs of the numerical model. Using the analytical solution, a method has been developed to estimate relative transpiration as a function of system parameters, which are often already used in vadose zone models: potential transpiration rate, root length density, minimum root surface pressure head, and soil theta-h and K-h functions.