986 resultados para Computer users
Resumo:
Most clinically-employed speech materials for testing hearing impaired individuals are recordings made by adult male talkers. The author examined the possible effect of talker age and gender on the speech perception of children through the use of 1) two speech perception tests, each with four talker types (adult males, adult females, 10-12 year olds, 5-7 year olds), and 2) two groups of pediatric listeners: normal-hearing (NH) and cochlear implant users (CI).
Resumo:
Even though pediatric hearing aid (HA) users listen most often to female talkers, clinically-used speech tests primarily consist of adult male talkers' speech. Potential effects of age and/or gender of the talker on speech perception of pediatric HA users were examined using two speech tests, hVd-vowel identification and CNC word recognition, and using speech materials spoken by four talker types (adult males, adult females, 10-12 year old girls, and 5-7 year old girls). For the nine pediatric HA users tested, word scores for the male talker's speech were higher than those for the female talkers, indicating that talker type can affect word recognition scores and that clinical tests may over-estimate everyday speech communication abilities of pediatric HA users.
Resumo:
Inconsistencies exist between traditional objective measures such as speech recognition and localization, and subjective reports of bimodal benefit. The purpose of this study was to expand the set of objective measures of bimodal benefit to include non-traditional listening tests, and to examine possible correlations between objective measures of auditory perception and subjective satisfaction reports.
Resumo:
Would a research assistant - who can search for ideas related to those you are working on, network with others (but only share the things you have chosen to share), doesn’t need coffee and who might even, one day, appear to be conscious - help you get your work done? Would it help your students learn? There is a body of work showing that digital learning assistants can be a benefit to learners. It has been suggested that adaptive, caring, agents are more beneficial. Would a conscious agent be more caring, more adaptive, and better able to deal with changes in its learning partner’s life? Allow the system to try to dynamically model the user, so that it can make predictions about what is needed next, and how effective a particular intervention will be. Now, given that the system is essentially doing the same things as the user, why don’t we design the system so that it can try to model itself in the same way? This should mimic a primitive self-awareness. People develop their personalities, their identities, through interacting with others. It takes years for a human to develop a full sense of self. Nobody should expect a prototypical conscious computer system to be able to develop any faster than that. How can we provide a computer system with enough social contact to enable it to learn about itself and others? We can make it part of a network. Not just chatting with other computers about computer ‘stuff’, but involved in real human activity. Exposed to ‘raw meaning’ – the developing folksonomies coming out of the learning activities of humans, whether they are traditional students or lifelong learners (a term which should encompass everyone). Humans have complex psyches, comprised of multiple strands of identity which reflect as different roles in the communities of which they are part – so why not design our system the same way? With multiple internal modes of operation, each capable of being reflected onto the outside world in the form of roles – as a mentor, a research assistant, maybe even as a friend. But in order to be able to work with a human for long enough to be able to have a chance of developing the sort of rich behaviours we associate with people, the system needs to be able to function in a practical and helpful role. Unfortunately, it is unlikely to get a free ride from many people (other than its developer!) – so it needs to be able to perform a useful role, and do so securely, respecting the privacy of its partner. Can we create a system which learns to be more human whilst helping people learn?
Resumo:
Different systems, different purposes – but how do they compare as learning environments? We undertook a survey of students at the University, asking whether they learned from their use of the systems, whether they made contact with other students through them, and how often they used them. Although it was a small scale survey, the results are quite enlightening and quite surprising. Blackboard is populated with learning material, has all the students on a module signed up to it, a safe environment (in terms of Acceptable Use and some degree of staff monitoring) and provides privacy within the learning group (plus lecturer and relevant support staff). Facebook, on the other hand, has no learning material, only some of the students using the system, and on the face of it, it has the opportunity for slips in privacy and potential bullying because the Acceptable Use policy is more lax than an institutional one, and breaches must be dealt with on an exception basis, when reported. So why do more students find people on their courses through Facebook than Blackboard? And why are up to 50% of students reporting that they have learned from using Facebook? Interviews indicate that students in subjects which use seminars are using Facebook to facilitate working groups – they can set up private groups which give them privacy to discuss ideas in an environment which perceived as safer than Blackboard can provide. No staff interference, unless they choose to invite them in, and the opportunity to select who in the class can engage. The other striking finding is the difference in use between the genders. Males are using blackboard more frequently than females, whilst the reverse is true for Facebook. Interviews suggest that this may have something to do with needing to access lecture notes… Overall, though, it appears that there is little relationship between the time spent engaging with Blackboard and reports that students have learned from it. Because Blackboard is our central repository for notes, any contact is likely to result in some learning. Facebook, however, shows a clear relationship between frequency of use and perception of learning – and our students post frequently to Facebook. Whilst much of this is probably trivia and social chit chat, the educational elements of it are, de facto, contructivist in nature. Further questions need to be answered - Is the reason the students learn from Facebook because they are creating content which others will see and comment on? Is it because they can engage in a dialogue, without the risk of interruption by others?
Resumo:
This paper discusses and compares the use of vision based and non-vision based technologies in developing intelligent environments. By reviewing the related projects that use vision based techniques in intelligent environment design, the achieved functions, technical issues and drawbacks of those projects are discussed and summarized, and the potential solutions for future improvement are proposed, which leads to the prospective direction of my PhD research.