969 resultados para Composite (steel-concrete) floors
Resumo:
One of the main problems of bridge maintenance in Iowa is the spalling and scaling of the decks. This problem stems from the continued use of deicing salts during the winter months. Since bridges will frost or freeze more often than roadways, the use of deicing salts on bridges is more frequent. The salt which is spread onto the bridge dissolves in water and permeates into the concrete deck. When the salt reaches the depth of the reinforcing steel and the concentration at that depth reaches the threshold concentration for corrosion (1.5 lbs./yd. 3 ), the steel will begin to oxidize. The oxidizing steel must then expand within the concrete. This expansion eventually forces undersurface fractures and spalls in the concrete. The spalling increases maintenance problems on bridges and in some cases has forced resurfacing after only a few years of service. There are two possible solutions to this problem. One solution is discontinuing the use of salts as the deicing agent on bridges and the other is preventing the salt from reaching or attacking the reinforcing steel. This report deals with one method which stops the salt from reaching the reinforcing steel. The method utilizes a waterproof membrane on the surface of a bridge deck. The waterproof membrane stops the water-salt solution from entering the concrete so the salt cannot reach the reinforcing steel.
Resumo:
The primary reason for using steam in the curing of concrete is to produce a high early strength. This high early strength is very desirable to the manufacturers of precast and prestressed concrete units, which often require expensive forms or stress beds. They want to remove the forms and move the units to storage yards as soon as possible. The minimum time between casting and moving the units is usually governed by the strength of the concrete. Steam curing accelerates the gain in strength at early ages, but the uncontrolled use of steam may seriously affect the growth in strength at later ages. The research described in this report was prompted by the need to establish realistic controls and specifications for the steam curing of pretensioned, prestressed concrete bridge beams and concrete culvert pipe manufactured in central plants. The complete project encompasses a series of laboratory and field investigations conducted over a period of approximately three years.
Resumo:
When a material fails under a number of repeated loads, each smaller than the ultimate static strength, a fatigue failure is said to have taken place. Many studies have been made to characterize the fatigue behavior of various engineering materials. The results of some of these studies have proved invaluable in the evaluation and prediction of the fatigue strength of structural materials. Considerable time and effort has gone into the evaluation of the fatigue behavior of metals. These early studies were motivated by practical considerations: The first fatigue tests were performed on materials that had been observed to fail after repeated loading of a magnitude less than that required for failure under the application of a single load. Mine-hoist chains, railway axles, and steam engine parts were among the first structural components to be recognized as exhibiting fatigue behavior. Since concrete is usually subjected to static loading rather than cyclic loading, need for knowledge of the fatigue behavior of concrete has lagged behind that of metals. One notable exception to this, however, is in the area of highway and airfield pavement design. Due to the fact that the fatigue behavior of concrete must be understood in the design of pavements and reinforced concrete bridges, highway engineers have provided the motivation for concrete fatigue studies since the 1920's.
Resumo:
A Research Project involving two, three, four and five inches of bonded Portland Cement Concrete Overlay on a 1.3 mile Portland Cement Concrete pavement was conducted in Clayton County, Iowa, during September, 1977, centering on the following objectives: 1. Determine the mixing and proportioning procedures required in using a conventional, central mix proportioning plant to produce a dense Portland Cement Concrete mixture using standard mixes with super-water reducing admixtures; 2. Determine the economics, longevity and maintenance performance of a bonded, thin-lift, non-reinforced Portland Cement Concrete resurfacing course using conventional procedures, equipment and concrete paving mixtures both with and without super-water reducing admixtures; 3. Determine if an adequate bond between the existing pavement and an overlay of thin-lift, dense, non-reinforced Portland Cement Concrete can be obtained with only special surface cleaning and no surface removal or grinding.
Resumo:
When a material fails under a number of repeated loads, each smaller than the ultimate static strength, a fatigue failure is said to have taken place. Many studies have been made to characterize the fatigue behavior of various engineering materials. The results of some of these studies have proved invaluable in the evaluation and prediction of the fatigue strength of structural materials. Considerable time and effort have gone into the evaluation of the fatigue behavior of metals. These early studies were motivated by practical considerations: the first fatigue tests were performed on materials that had been observed to fail after repeated loading of a magnitude less than that required for failure under the application of a single load. Mine-hoist chains (1829), railway axles (1852), and steam engine parts were among the first structural components to be recognized as exhibiting fatigue behavior. Since concrete is usually subjected to static loading rather than cyclic loading, need for knowledge of the fatigue behavior of concrete has lagged behind that of metals. One notable exception to this, however, is in the area of highway and airfield pavement design. Due to the fact that the fatigue behavior of concrete must be understood in the design of pavements and reinforced concrete bridges, highway engineers have provided the motivation for concrete fatigue studies since the 1920s.
Resumo:
The earliest overall comprehensive work on the use of fly ash in concrete was reported by Davis and Associates of the University of California in 1937. Since that time, there have been numerous applications of the use and varying propertions of fly ash in portland cement concrete mixes. Fly ash is a pozzolanic powdery by-product of the coal combustion process which is recovered from flue gases and is, generally associated with electric power generating plants. Environmental regulations enacted in recent years have required that fly ash be removed from the flue gases to maintain clean air standards. This has resulted in an increased volume of high quality fly ash that is considered a waste product or a by-product that can be utilized in products such as portland cement concrete. There are several sources of the high quality fly ash located in Iowa currently producing a combined total of 281,000 tons of material annually.
Resumo:
Due to frequent accidental damage to prestressed concrete (P/C) bridges caused by impact from overheight vehicles, a project was initiated to evaluate the strength and load distribution characteristics of damaged P/C bridges. A comprehensive literature review was conducted. It was concluded that only a few references pertain to the assessment and repair of damaged P/C beams. No reference was found that involves testing of a damaged bridge(s) as well as the damaged beams following their removal. Structural testing of two bridges was conducted in the field. The first bridge tested, damaged by accidental impact, was the westbound (WB) I-680 bridge in Beebeetown, Iowa. This bridge had significant damage to the first and second beams consisting of extensive loss of section and the exposure of numerous strands. The second bridge, the adjacent eastbound (EB) structure, was used as a baseline of the behavior of an undamaged bridge. Load testing concluded that a redistribution of load away from the damaged beams of the WB bridge was occurring. Subsequent to these tests, the damaged beams in the WB bridge were replaced and the bridge retested. The repaired WB bridge behaved, for the most part, like the undamaged EB bridge indicating that the beam replacement restored the original live load distribution patterns. A large-scale bridge model constructed for a previous project was tested to study the changes in behavior due to incrementally applied damage consisting initially of only concrete removal and then concrete removal and strand damage. A total of 180 tests were conducted with the general conclusion that for exterior beam damage, the bridge load distribution characteristics were relatively unchanged until significant portions of the bottom flange were removed along with several strands. A large amount of the total applied moment to the exterior beam was redistributed to the interior beam of the model. Four isolated P/C beams were tested, two removed from the Beebeetown bridge and two from the aforementioned bridge model. For the Beebeetown beams, the first beam, Beam 1W, was tested in an "as removed" condition to obtain the baseline characteristics of a damaged beam. The second beam, Beam 2W, was retrofit with carbon fiber reinforced polymer (CFRP) longitudinal plates and transverse stirrups to strengthen the section. The strengthened Beam was 12% stronger than Beam 1W. Beams 1 and 2 from the bridge model were also tested. Beam 1 was not damaged and served as the baseline behavior of a "new" beam while Beam 2 was damaged and repaired again using CFRP plates. Prior to debonding of the plates from the beam, the behavior of both Beams 1 and 2 was similar. The retrofit beam attained a capacity greater than a theoretically undamaged beam prior to plate debonding. Analytical models were created for the undamaged and damaged center spans of the WB bridge; stiffened plate and refined grillage models were used. Both models were accurate at predicting the deflections in the tested bridge and should be similarly accurate in modeling other P/C bridges. The moment fractions per beam were computed using both models for the undamaged and damaged bridges. The damaged model indicates a significant decrease in moment in the damaged beams and a redistribution of load to the adjacent curb and rail as well as to the undamaged beam lines.
Resumo:
Pavements have been overlaid with thin bonded portland cement concrete (PCC) for several years. These projects have had traffic detoured for a period of 5-10 days. These detours are unacceptable to the traveling public and result in severe criticism. The use of thin bonded fast track overlay was promoted to allow a thin bonded PCC overlay with minimal disruption of local traffic. This project demonstrated the concept of using one lane of the roadway to maintain traffic while the overlay was placed on the other and then with the rapid strength gain of the fast track concrete, the construction and local traffic is maintained on the newly placed, thin bonded overlay. The goals of this project were: 1. Traffic usage immediately after placement and finishing. 2. Reduce traffic disruption on a single lane to less than 5 hours. 3. Reduce traffic disruption on a given section of two-lane roadway to less than 2 days. 4. The procedure must be economically viable and competitive with existing alternatives. 5. Design life for new construction equivalent to or in excess of conventional pavements. 6. A 20 year minimum design life for rehabilitated pavements.
Resumo:
Identification of ways to enhance consistency and proper entrained air content in hardened concrete pavement has long been a goal of state highway agencies and the Federal Highway Administration. The work performed in this study was done under FHWA Work Order No: DTFH71-97-PTP-IA-47 and referred to as Project HR-1068 by the Iowa DOT. The results of this study indicate that the monitoring devices do provide both the contractor and contracting authority and are a good way of controlling the consistent rate of vibration to achieve a quality concrete pavement product. The devices allow the contractor to monitor vibrator operation effectively and consistently. The equipment proved to be reliable under all weather and paver operating conditions. This type of equipment adds one more way of improving the consistency and quality of the concrete pavement.
Resumo:
Fly ash was used in this evaluation study to replace 15% of the cement in Class D-57 structural concrete containing ASTM C494 Type B, retarding admixtures. Two Class "C" ashes and one Class "F" ash from Iowa approved sources were examined in each mix. When Class "C" ashes were used, they were substituted on the basis of 1.0 pound for each pound of cement removed. When Class "F" ash was used, it was substituted on the basis of 1.25 pounds of ash for each pound of cement removed. Compressive strengths of the retarded mixes, with and without fly ash, were determined at 7, 28 and 56 days of age. In most cases, with few exceptions, the mixes containing the fly ash exhibited higher strengths than the same concrete mix without the fly ash. The exceptions were the 7, 28, and 56 days of the mixes containing Class F ash. The freeze/thaw durability of the concrete studied was not affected by the presence of fly ash. The data obtained suggested that the present Class D-57 structural concrete mix with retarding admixtures can be modified to allow the substitution of 15% of the cement with an approved fly ash when Class III coarse aggregates are used. Setting times of the concretes were not materially changed due to the incorporation of fly ash.
Resumo:
An Iowa D.O.T. Laboratory built machine was constructed for the chloride permeability testing of concrete by measuring electric current through a specimen between a salt solution and a base solution. This study had two purposes. The first was to evaluate the machine's performance. To do this, three concrete mixes were made consisting of different cement factors and water/cement ratios. Each mix was tested for chloride ion content by the 90- day salt ponding method and for chloride permeability at a 28-day cure by the permeability machine. The results from each test were evaluated to see if there was correlation between chloride ion content and the chloride permeability. It was determined that there was a correlation and that the permeability machine was satisfactory for determining chloride permeability in concrete. The second purpose of this study was to examine the effects that pozzolans have on the chloride permeability of concrete. Four mixes were made: one without any pozzolans as a control, one with class C fly ash, one with class F fly ash, and one with silica fume. Specimens from each mix were evaluated for chloride ion content by the 90-day salt ponding test and by the laboratory built machine for chloride permeability after curing 28 days. Specimens from these mixes were also taken from the salt ponding slabs after completion of the ponding test to examine the effect chloride ion content has on the operation of the chloride permeability machine. Specimens containing pozzolans were also examined for chloride permeability after a cure of 180 days. It was determined that the addition of pozzolans to concrete lowers the chloride permeability as measured by the permeability machine. Class F fly ash and silica fume in the concrete had a major effect in lowering the chloride permeability in concrete as measured by the permeability machine.
Resumo:
Friction testing of pavements has been a continuing effort by the Iowa Department of Transportation since 1969. This report details results of tests of asphaltic concrete pavements on the primary and interstate road systems. Both sprinkle treated and non-sprinkle treated pavements placed between 1975 - 1985 are included. A total of 1785 miles representing 216 separate paving projects were examined. The effect of fog sealing sprinkle treated pavements was studied by testing friction levels before and after the application of the fog seals. Conclusions of the report are: 1. Current aggregate selection criteria for a.c. pavement surface courses provides adequate friction levels through 10 years and should remain effective through a 15 year design life. 2. Sprinkle treatment of pavements has, for the most part, provided macrotexture in the pavement surface as evidenced by smooth tire testing. 3. Fog sealing sprinkle treated pavements does not significantly alter the friction properties.
Resumo:
In several locations of Iowa, it is becoming more difficult to produce concrete sand consistently at a reasonable cost. Both ASTM and AASHTO have specifications for concrete sands that allow a finer, poorer graded sand than Iowa specifications. The objective of the study was to develop standard mix designs to permit the use of finer graded sand for PC concrete. Three hundred cylinders were made from five sands available in the state. Based on the results of the study, the following are recommended: (1) Create another class of concrete sand by: (a) lowering the current mortar strength ratio from 1.5 to 1.3, (b) raising the allowance for the percent passing one sieve and retained on the next from 40 to 45, and (c) including a provision that 25 to 60 percent passing the number 30 sieve is required for the sand; and (2) Modify the standard paving mixes with and without fly ash for use with the finer sand as follows: (a) 8% more cement and fly ash for B-2 to B-5 mixes, (b) 7% more cement and fly ash for A-2 to A-5 mixes, and (c) 5% more cement and fly ash for C-2 to C-5 mixes and water reduced mixes.
Resumo:
The Experimental Project was designated as Research Project No. HR-34, sponsored by the Iowa Highway Research Board and constructed by the Iowa Highway Commission. Construction was supervised cooperatively by Engineers of the Iowa Highway Commission and the Portland Cement Association. The objective of the experiment is to study the behavior of relatively thin portland cement concrete resurfacing courses placed with bond on old concrete pavements. The phase of the problem being studied now, involves only pavements in which the old concrete is structurally sound.
Resumo:
A program of A (90 day moist room), B (14 day moist room) and C (7 day moist room and 7 day 50%_humidity) type curing for the R-11-Z program of durability of concrete using the automatic freeze and thaw machine (ASTM C-291) has been used in the Materials Department of the Iowa State Highway Commission since December 6, 1966. A summary of the results obtained from then until March 25, 1968, indicates that the B and C type curing are yielding very little valuable information. However, the A cure exhibits a wide range of durability factors and also groups the aggregates in an order which is related to the service record (there are definite exceptions. The biggest disadvantage to the A cure is the length of time that it takes to complete the test (90 day cure and 38 day test). The Kansas Highway Department has experimented with different cements and aggregates in order to determine which combination offers a concrete with the best durability factor possible. In an experimental test section of highway, concrete made with a Type II cement appeared to have better durability than others made with Type I cements. Because of this, a question has been raised at the Iowa State Highway Commission - Can concrete made with Type II cements, because of a lesser amount of tricalcium aluminate, yield better durability than concrete made with Type I cements?