958 resultados para Composer-conductor
Resumo:
from left: 1 - Wm. Tate, conductor, on pilot [others unidentified]
Resumo:
from left: 1 - Wm. Tate, conductor, on pilot [others unidentified]
Resumo:
[composer of "The Victors", picture cropped from 1897 track team photo]
Resumo:
from left: 1 - Wm. Tate, conductor, on pilot [others unidentified]
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (D.M.A.)--University of Washington, 2016-06
Resumo:
Thesis (D.M.A.)--University of Washington, 2016-06
Resumo:
The precise evaluation of electromagnetic field (EMF) distributions inside biological samples is becoming an increasingly important design requirement for high field MRI systems. In evaluating the induced fields caused by magnetic field gradients and RF transmitter coils, a multilayered dielectric spherical head model is proposed to provide a better understanding of electromagnetic interactions when compared to a traditional homogeneous head phantom. This paper presents Debye potential (DP) and Dyadic Green's function (DGF)-based solutions of the EMFs inside a head-sized, stratified sphere with similar radial conductivity and permittivity profiles as a human head. The DP approach is formulated for the symmetric case in which the source is a circular loop carrying a harmonic-formed current over a wide frequency range. The DGF method is developed for generic cases in which the source may be any kind of RF coil whose current distribution can be evaluated using the method of moments. The calculated EMFs can then be used to deduce MRI imaging parameters. The proposed methods, while not representing the full complexity of a head model, offer advantages in rapid prototyping as the computation times are much lower than a full finite difference time domain calculation using a complex head model. Test examples demonstrate the capability of the proposed models/methods. It is anticipated that this model will be of particular value for high field MRI applications, especially the rapid evaluation of RF resonator (surface and volume coils) and high performance gradient set designs.
Resumo:
In most magnetic resonance imaging (MRI) systems, pulsed magnetic gradient fields induce eddy currents in the conducting structures of the superconducting magnet. The eddy currents induced in structures within the cryostat are particularly problematic as they are characterized by long time constants by virtue of the low resistivity of the conductors. This paper presents a three-dimensional (3-D) finite-difference time-domain (FDTD) scheme in cylindrical coordinates for eddy-current calculation in conductors. This model is intended to be part of a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The singularity apparent in the governing equations is removed by using a series expansion method and the conductor-air boundary condition is handled using a variant of the surface impedance concept. The numerical difficulty due to the asymmetry of Maxwell equations for low-frequency eddy-current problems is circumvented by taking advantage of the known penetration behavior of the eddy-current fields. A perfectly matched layer absorbing boundary condition in 3-D cylindrical coordinates is also incorporated. The numerical method has been verified against analytical solutions for simple cases. Finally, the algorithm is illustrated by modeling a pulsed field gradient coil system within an MRI magnet system. The results demonstrate that the proposed FDTD scheme can be used to calculate large-scale eddy-current problems in materials with high conductivity at low frequencies.
Resumo:
This article reports a study of the effects of synthesis parameters on the preparation and formation of mesoporous titania nanopowders by employing a two-step sol-gel method. These materials displayed crystalline domains characteristic of anatase. The first step of the process involved the hydrolysis of titanium isopropoxide in a basic aqueous solution mediated by neutral surfactant. The solid product obtained from step 1 was then treated in an acidified ethanol solution containing the same titanium precursor to thicken the pore walls. Low pH and higher loading of the Ti precursor in step 2 produced better mesoporosity and crystallinity of titanium dioxide polymorphs. The resultant powder exhibited a high surface area (73.8 m(2)/g) and large pore volume (0.17 cm(3)/g) with uniform mesopores. These materials are envisaged to be used as precursors for mesoporous titania films as a wide band gap semiconductor in dye-sensitized nanocrystalline TiO2 solar cells.
Resumo:
Mussorgsky's Sunless cycle is aesthetically and stylistically an anomalous member of his oeuvre. Its notably effaced, pared-down, and withdrawn qualities present challenges to critical interpretation. Its uniqueness, however, renders it a crucial work for furnishing the fullest possible picture of Mussorgsky as a creative artist. The author of its texts, Golenishchev-Kutuzov (whose relationship with Mussorgsky at the time of its writing possibly extended beyond the platonic) has been identified by recent scholarship as an essential eye-witness for those to whom Stasov's populist characterization of the composer does not ring entirely true. Golenishchev-Kutuzov believed that in Sunless Mussorgsky first revealed his authentic artistic self. According to Golenishchev-Kutuvoz, Mussorgsky regarded his signal achievement in Sunless to have been the eradication of all elements other than feeling. In other words, he had thrown off the stylistic shackles imposed by the aesthetics of realism and relied entirely on intuitive harmonic invention as the sole conveyor of a purely subjective, affective meaning in the cycle. This hypothesis forms the point of departure for an investigation of select numbers of the cycle. Analysis reveals that the affective aspect is riot the only significant element operative. Alongside remnants of the realist style, there is evidence, of varying degrees of subtlety, for a knowing use of symmetrical pitch organization. Mussorgsky not only adapted the usual referential attachments of symmetrically based chromaticism-typically found in Russian operas of the second half of the nineteenth century-he also, through extremely simple but effective means, synthesized the intuitive harmonic and rational symmetrical elements of the cycle's pitch organization so that the latter emerges seamlessly out of the former. This remarkable synthesis ensures the cycle's uniformity of tone while also allowing for a reading that extends beyond the generally affective to the symbolically more specific. This symbolic level of reading offers several interpretative possibilities, one of which may refer even to the relationship of the poet and the composer. Irrespective of such potentials for interpretation, the most significant achievement in the cycle remains the synthesis of the intuitive/affective and rational/symbolic elements of its organization. Songs 1, 2, 3, and 6 of the cycle are considered in detail.
Resumo:
Zirconium phosphate has been extensively studied as a proton conductor for proton exchange membrane (PEM) fuel cell applications. Here we report the synthesis of mesoporous, templated sol-gel zirconium phosphate for use in PEM applications in an effort to determine its suitability for use as a surface functionalised, solid acid proton conductor in the future. Mesoporous zirconium phosphates were synthesised using an acid-base pair mechanism with surface areas between 78 and 177 m(2) g(-1) and controlled pore sizes in the range of 2-4 nm. TEM characterisation confirmed the presence of a wormhole like pore structure. The conductivity of such materials was up to 4.1 x 10(-6) S cm(-1) at 22degreesC and 84% relative humidity (RH), while humidity reduction resulted in a conductivity decrease by more than an order of magnitude. High temperature testing on the samples confirmed their dependence on hydration for proton conduction and low hydroscopic nature. It was concluded that while the conductivity of these materials is low compared to Nafion, they may be a good candidate as a surface functionalised solid acid proton conductor due to their high surface area, porous structure and inherent ability to conduct protons.