964 resultados para Collaborative processes
Resumo:
To simulate fracture behaviors in concrete more realistically, a theoretical analysis on the potential question in the quasi-static method is presented, then a novel algorithm is proposed which takes into account the inertia effect due to unstable crack propagation and meanwhile requests much lower computational efforts than purely dynamic method. The inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, results may become questionable if a fracture process including unstable cracking is simulated by the quasi-static procedure excluding completely inertia effects. However, it requires much higher computational effort to simulate experiments with not very high loading rates by the dynamic method. In this investigation which can be taken as a natural continuation, the potential question of quasi-static method is analyzed based on the dynamic equations of motion. One solution to this question is the new algorithm mentioned above. Numerical examples are provided by the generalized beam (GB) lattice model to show both fracture processes under different loading rates and capability of the new algorithm.
Resumo:
In recent years, participatory approaches have been incorporated in decision-making processes as a way to strengthen the bonds between diverse areas of knowledge and social actors in natural resources management and environmental governance. Despite the favourable context, this paradigm shift is still in an early stage within the development of the Natura 2000 in the European Union, the largest network of protected areas in the world. To enhance the full scope of participatory approaches in this context, this article: (i) briefly reviews the role of participatory approaches in environmental governance, (ii) develops a common framework to evaluate such participatory processes in protected area management, (iii) applies this framework to a real case study, and (iv) based on the lessons learned, provides guidance to improve the future governance of Natura 2000 sites.
Resumo:
Resonant interaction of an autoionising state with a strong laser field is considered and effects of second-order ionisation processes are investigated. The authors show that these processes play a very important role in laser-induced autoionisation (LIA). They drastically affect the lowest-order peaks in the photoelectron spectrum. In addition to these peaks, high-order peaks due to ejection of energetic photoelectrons appear. For the laser intensities of current interest, second-order peaks are much stronger than the original ones, an important result that, they believe, can be observed experimentally. Moreover, `peak switching', a general feature of above-threshold ionisation, is also manifest in the electron spectrum of LIA.
Resumo:
(PDF contains 114 pages)
Resumo:
Currently completing its fifth year, the Coastal Waccamaw Stormwater Education Consortium (CWSEC) helps northeastern South Carolina communities meet National Pollutant Discharge Elimination System (NPDES) Phase II permit requirements for Minimum Control Measure 1 - Public Education and Outreach - and Minimum Control Measure 2 - Public Involvement. Coordinated by Coastal Carolina University, six regional organizations serve as core education providers to eight coastal localities including six towns and cities and two large counties. CWSEC recently finished a needs assessment to begin the process of strategizing for the second NPDES Phase II 5-year permit cycle in order to continue to develop and implement effective, results-oriented stormwater education and outreach programs to meet federal requirements and satisfy local environmental and economic needs. From its conception in May 2004, CWSEC set out to fulfill new federal Clean Water Act requirements associated with the NPDES Phase II Stormwater Program. Six small municipal separate storm sewer systems (MS4s) located within the Myrtle Beach Urbanized Area endorsed a coordinated approach to regional stormwater education, and participated in a needs assessment resulting in a Regional Stormwater Education Strategy and a Phased Education Work Plan. In 2005, CWSEC was formally established and the CWSEC’s Coordinator was hired. The Coordinator, who is also the Environmental Educator at Coastal Carolina University’s Waccamaw Watershed Academy, organizes six regional agencies who serve as core education providers for eight coastal communities. The six regional agencies working as core education providers to the member MS4s include Clemson Public Service and Carolina Clear Program, Coastal Carolina University’s Waccamaw Watershed Academy, Murrells Inlet 2020, North Inlet-Winyah Bay National Estuarine Research Reserve’s Coastal Training and Public Education Programs, South Carolina Sea Grant Consortium, and Winyah Rivers Foundation’s Waccamaw Riverkeeper®. CWSEC’s organizational structure results in a synergy among the education providers, achieving greater productivity than if each provider worked separately. The member small MS4s include City of Conway, City of North Myrtle Beach, City of Myrtle Beach, Georgetown County, Horry County, Town of Atlantic Beach, Town of Briarcliffe Acres, and Town of Surfside Beach. Each MS4 contributes a modest annual fee toward the salary of the Coordinator and operational costs. (PDF contains 3 pages)
Resumo:
Non-governmental organizations (NGOs) are now major players in the realm of environmental conservation. While many environmental NGOs started as national organizations focused around single-species protection, governmental advocacy, and preservation of wilderness, the largest now produce applied conservation science and work with national and international stakeholders to develop conservation solutions that work in tandem with local aspirations. Marine managed areas (MMAs) are increasingly being used as a tool to manage anthropogenic stressors on marine resources and protect marine biodiversity. However, the science of MMA is far from complete. Conservation International (CI) is concluding a 5 year, $12.5 million dollar Marine Management Area Science (MMAS) initiative. There are 45 scientific projects recently completed, with four main “nodes” of research and conservation work: Panama, Fiji, Brazil, and Belize. Research projects have included MMA ecological monitoring, socioeconomic monitoring, cultural roles monitoring, economic valuation studies, and others. MMAS has the goals of conducting marine management area research, building local capacity, and using the results of the research to promote marine conservation policy outcomes at project sites. How science is translated into policy action is a major area of interest for science and technology scholars (Cash and Clark 2001; Haas 2004; Jasanoff et al. 2002). For science to move policy there must be work across “boundaries” (Jasanoff 1987). Boundaries are defined as the “socially constructed and negotiated borders between science and policy, between disciplines, across nations, and across multiple levels” (Cash et al. 2001). Working across the science-policy boundary requires boundary organizations (Guston 1999) with accountability to both sides of the boundary, among other attributes. (Guston 1999; Clark et al. 2002). This paper provides a unique case study illustrating how there are clear advantages to collaborative science. Through the MMAS initiative, CI built accountability into both sides of the science-policy boundary primarily through having scientific projects fed through strong in-country partners and being folded into the work of ongoing conservation processes. This collaborative, boundary-spanning approach led to many advantages, including cost sharing, increased local responsiveness and input, better local capacity building, and laying a foundation for future conservation outcomes. As such, MMAS can provide strong lessons for other organizations planning to get involved in multi-site conservation science. (PDF contains 3 pages)
Resumo:
Several schemes for coherent quantum control of atomic and molecular processes have been proposed and investigated by using the techniques of adiabatic passage and ultrashort pulses, respectively. Some interesting results have been found.