984 resultados para Cognitive Functions
Resumo:
Metastases are responsible for most cancer-related deaths. One of the hallmarks of metastatic cells is increased motility and migration through extracellular matrixes. These processes rely on specific small GTPases, in particular those of the Rho family. Deleted in liver cancer-1 (DLC1) is a tumor suppressor that bears a RhoGAP activity. This protein is lost in most cancers, allowing malignant cells to proliferate and disseminate in a Rho-dependent manner. However, DLC1 is also a scaffold protein involved in alternative pathways leading to tumor and metastasis suppressor activities. Recently, substantial information has been gathered on these mechanisms and this review is aiming at describing the potential and known alternative GAP-independent mechanisms allowing DLC1 to impair migration, invasion, and metastasis formation.
Resumo:
Although cross-sectional diffusion tensor imaging (DTI) studies revealed significant white matter changes in mild cognitive impairment (MCI), the utility of this technique in predicting further cognitive decline is debated. Thirty-five healthy controls (HC) and 67 MCI subjects with DTI baseline data were neuropsychologically assessed at one year. Among them, there were 40 stable (sMCI; 9 single domain amnestic, 7 single domain frontal, 24 multiple domain) and 27 were progressive (pMCI; 7 single domain amnestic, 4 single domain frontal, 16 multiple domain). Fractional anisotropy (FA) and longitudinal, radial, and mean diffusivity were measured using Tract-Based Spatial Statistics. Statistics included group comparisons and individual classification of MCI cases using support vector machines (SVM). FA was significantly higher in HC compared to MCI in a distributed network including the ventral part of the corpus callosum, right temporal and frontal pathways. There were no significant group-level differences between sMCI versus pMCI or between MCI subtypes after correction for multiple comparisons. However, SVM analysis allowed for an individual classification with accuracies up to 91.4% (HC versus MCI) and 98.4% (sMCI versus pMCI). When considering the MCI subgroups separately, the minimum SVM classification accuracy for stable versus progressive cognitive decline was 97.5% in the multiple domain MCI group. SVM analysis of DTI data provided highly accurate individual classification of stable versus progressive MCI regardless of MCI subtype, indicating that this method may become an easily applicable tool for early individual detection of MCI subjects evolving to dementia.
Resumo:
Interdependence is the main feature of dyadic relationships and, in recent years, various statistical procedures have been proposed for quantifying and testing this social attribute in different dyadic designs. The purpose of this paper is to develop several functions for this kind of statistical tests in an R package, known as nonindependence, for use by applied social researchers. A Graphical User Interface (GUI) is also developed to facilitate the use of the functions included in this package. Examples drawn from psychological research and simulated data are used to illustrate how the software works.
Resumo:
Interest in cognitive pretest methods for evaluating survey questionnaires has been increasing for the last three decades. However, analysing the features of the scientific output in the field can be difficult due to its prevalence in public and private institutes whose main mission is not scientific research. The aim of this research is to characterize the current state of scientific output in the field by means of two bibliometric studies for the period from 1980 to 2007. Study 1 analysed documents obtained from the more commonly used bibliographic databases. Study 2 supplemented the body of documents from Study 1 with documents from non-indexed journals, conference papers, etc. Results show a constant growth in the number of publications. The wide dispersion of publication sources, together with the highlighted role of the public and private institutions as centres of production, can also be identified as relevant characteristics of the scientific output in this field.
Resumo:
This study explores the cognitive structures, understood as construct systems, of patients suffering from bulimia nervosa (BN). Previous studies investigated the construct systems of disordered eaters suggesting that they had a higher distance between their construction of the self and the «ideal self», and also more rigidity. In addition to these aspects, this study explored the presence of implicative dilemmas (ID). Thirty two women who met criteria for BN and were treated in a specialized center were compared to a non clinical group composed by 32 women matched by age. All participants were assessed using Repertory Grid Technique (RGT). In BN patients it was more common (71.9%) to find IDs than in controls (18.8%). They also showed higher polarization and higher self-ideal discrepancies (even more for those with a long history of BN). The measures provided by the RGT can be useful for the assessment of self-construction and cognitive conflicts in BN patients and to appreciate their role in this disorder. In addition, this technique could be helpful for clinicians to explore the patient"s constructs system, and specially to identify IDs that could be maintaining the symptoms or hindering change in order to focus on them to facilitate improvement.
Resumo:
Background and Aims: Overweight, obesity and binge eating disorder are commonly reported in persons with severe mental disorders. Particularly, antipsychotic drugs (AP) induce weight gain in up to half of the patients. The aim of the present study is to confirm a previous study results on a larger sample of patients, to assess the impact of the interventions on other relevant dimensions of eating and weight related cognitions as well as to assess potential clinical indicators of outcomes such as AP drug, concomitant treatment with lithium or carbamazepine, psychiatric diagnostic, binge eating and severity of cognitive distortions. Method: A controlled study (12-week CBT vs. B N E) was carried out on 99 patients treated with an AP and who have gained weight following this treatment. Binge eating symptomatology, eating and weight-related cognitions, as well as weight and body mass index were assessed before treatment, at 12 weeks and at 24 weeks. Results: The findings confirms usefulness and effectiveness of the proposed CBT program on the treatment of binge symptomatology, cognitive distortions and obesity in patients treated with AP. Reduction of binge symptoms and maladapted cognitions appeared early, whereas the effect on weight appeared later during the follow up observation. No differences on outcomes were found across pharmacotherapy characteristics, diagnostic categories, binge eating nor severity of cognitive distortions. Conclusion: The proposed CBT treatment is useful for patients suffering from weight gain associated with AP treatments indeed when a concomitant treatment with lithium or valproate was given.
Resumo:
Tobacco use is positively associated with severity of symptoms along the schizophrenia spectrum. Accordingly it could be argued that neuropsychological performance, formerly thought to be modulated by schizotypy, is actually modulated by drug use or an interaction of drug use and schizotypy. We tested whether habitual cigarette smokers as compared to non-smokers would show a neuropsychological profile similar to that observed along the schizophrenia spectrum and, if so, whether smoking status or nicotine dependence would be more significant modulators of behavior than schizotypy. Because hemispheric dominance has been found to be attenuated along the schizophrenia spectrum, 40 right-handed male students (20 non-smokers) performed lateralized left- (lexical decisions) and right- (facial decision task) hemisphere dominant tasks. All individuals completed self-report measures of schizotypy and nicotine dependence. Schizotypy predicted laterality in addition to smoking status: While positive schizotypy (Unusual Experiences) was unrelated to hemispheric performance, Cognitive Disorganization predicted reduced left hemisphere dominant language functions. These latter findings suggest that Cognitive Disorganization should be regarded separately as a potentially important mediator of thought disorganization and language processing. Additionally, increasing nicotine dependence among smokers predicted a right hemisphere shift of function in both tasks that supports the role of the right hemisphere in compulsive/impulsive behavior.
Resumo:
Individuals with depression process information in an overly negative or biased way (e.g., Henriques & Leitenberg, 2002) and demonstrate significant interpersonal dysfunction (e.g., Zlotnick, Kohn, Keitner, & Della Grotta, 2000). This study examined the relationship between cognitive errors (CEs) and interpersonal interactions in early psychotherapy sessions of 25 female patients with major depression. Transcripts were rated for CEs using the Cognitive Error Rating Scale (Drapeau, Perry, & Dunkley, 2008). Interpersonal patterns were assessed using the Structural Analysis of Social Behavior (Benjamin, 1974). Significant associations were found between CEs and markers of interpersonal functioning in selected contexts. The implications of these findings in bridging the gap between research and practice, enhancing treatment outcome, and improving therapist training are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Resumo:
A. Costanza, K. Weber, S. Gandy, C. Bouras, P. R. Hof, P. Giannakopoulos and A. Canuto (2011) Neuropathology and Applied Neurobiology37, 570-584 Contact sport-related chronic traumatic encephalopathy in the elderly: clinical expression and structural substrates Professional boxers and other contact sport athletes are exposed to repetitive brain trauma that may affect motor functions, cognitive performance, emotional regulation and social awareness. The term of chronic traumatic encephalopathy (CTE) was recently introduced to regroup a wide spectrum of symptoms such as cerebellar, pyramidal and extrapyramidal syndromes, impairments in orientation, memory, language, attention, information processing and frontal executive functions, as well as personality changes and behavioural and psychiatric symptoms. Magnetic resonance imaging usually reveals hippocampal and vermis atrophy, a cavum septum pellucidum, signs of diffuse axonal injury, pituitary gland atrophy, dilated perivascular spaces and periventricular white matter disease. Given the partial overlapping of the clinical expression, epidemiology and pathogenesis of CTE and Alzheimer's disease (AD), as well as the close association between traumatic brain injuries (TBIs) and neurofibrillary tangle formation, a mixed pathology promoted by pathogenetic cascades resulting in either CTE or AD has been postulated. Molecular studies suggested that TBIs increase the neurotoxicity of the TAR DNA-binding protein 43 (TDP-43) that is a key pathological marker of ubiquitin-positive forms of frontotemporal dementia (FTLD-TDP) associated or not with motor neurone disease/amyotrophic lateral sclerosis (ALS). Similar patterns of immunoreactivity for TDP-43 in CTE, FTLD-TDP and ALS as well as epidemiological correlations support the presence of common pathogenetic mechanisms. The present review provides a critical update of the evolution of the concept of CTE with reference to its neuropathological definition together with an in-depth discussion of the differential diagnosis between this entity, AD and frontotemporal dementia.
Resumo:
One of the most intriguing functions of the brain is the ability to learn and memorize. The mechanism through which memory and learning are expressed requires the activation of NMDA receptors (NMDARs). These molecular entities are placed at the postsynaptic density of excitatory synapses and their function is tightly controlled by the actions of several modulators at the extracellular, intracellular and pore sites. A large part of the intracellular modulation comes from the action of G-protein coupled receptors (GPCRs). Through intracellular cascades typically involving kinases and phosphatases, GPCRs potentiate or inhibit NMDARs, controlling the conductive state but also the trafficking within the synapse. The GPCRs are involved in the modulation of a variety of brain functions. Many of them control cognition, memory and learning performance, therefore, their effects on NMDARs are extensively studied. The orexinergic system signals through GPCRs and it is well known for the regulation of waking, feeding, reward and autonomic functions. Moreover, it is involved in potentiating hippocampus-related cognitive tasks. Orexin receptors and fibers are present within the hippocampus, but whether these directly modulate hippocampal cells and synapses has not yet been determined. During my thesis, I studied orexinergic actions on excitatory synaptic transmission via whole-cell patch-clamp recordings in rat acute hippocampal slices. I observed that exogenously applied orexin-A (ox-A) exerted a strong inhibitory action on NMDAR-mediated synaptic potentials at mossy fiber (MF)-CA3 synapses, by postsynaptically activating orexin-2 receptors, a minor inhibition at Schaffer collateral-CAl synapses and did not affect other synapses with the CA3 area. Moreover, I demonstrated that the susceptibility of NMDARs to ox- A depends on the tone of endogenous orexin known to fluctuate during the day-night cycle. In fact, in slices prepared during the active period of the rats, when endogenous orexin levels are high, NMDAR-currents were not affected by exogenously applied ox-A. The inhibitory effect of ox-A was, however, reverted when interfering with the orexinergic system through intraperitoneal injections of almorexant, a dual orexin receptor antagonist, during the active phase prior to slice preparation. This thesis work suggests that the orexinergic system regulates NMDAR-dependent information flow through select hippocampal pathways depending on the time-of-day. The specific orexinergic modulation of NMDARs at MFs dampens the excitability of the hippocampal circuit and could impede the mechanisms related to memory formation, possibly also following extended periods of waking. -- La capacité d'apprentissage et de mémorisation est une des fonctions les plus intrigantes de notre cerveau. Il a été montré qu'elles requièrent l'activation des récepteurs NMDA (NMDARs). Ces entités moléculaires sont présentes au niveau de la densité post-synaptique des synapses excitatrices et leur fonction est étroitement contrôlée par l'action de nombreux modulateurs au niveau extracellulaire, intracellulaire et membranaire de ces récepteurs. Une grande partie de la modulation intracellulaire s'effectue via l'action de récepteurs couplés aux protéines G (GPCRs). Grace à leurs cascades intracellulaires typiquement impliquant des kinases et des phosphatases, les GPCRs favorisent l'activation ou l'inhibition des NMDARs, contrôlant ainsi leur perméabilité mais aussi leur mouvement à la synapse. Les GPCRs sont impliquées dans de nombreuses fonctions cérébrales telles que la cognition, la mémoire ainsi que la capacité d'apprentissage c'est pour cela que leurs effets sur les NMDARs sont très étudiés. Le système orexinergique fait intervenir ces GPCRs et est connu par son rôle dans la régulation de fonctions physiologiques telles que l'éveil, la prise alimentaire, la récompense ainsi que d'autres fonctions du système nerveux autonome. De plus, ce système est impliqué dans la régulation de tâches cognitives liées à l'hippocampe. Bien que les fibres et les récepteurs à l'orexine soient présents dans l'hippocampe, leur mécanisme d'action sur les cellules et les synapses de l'hippocampe n'a pas encore été élucidé. Durant ma thèse, je me suis intéressée aux effets de l'orexine sur la transmission synaptique excitatrice en utilisant la méthode d'enregistrement en patch-clamp en configuration cellule entière sur des tranches aiguës d'hippocampes de rats. J'ai observé que l'application exogène d'orexine A d'une part inhibe fortement les courants synaptiques dépendants de l'activation des NMDARs au niveau de la synapse entre les fibres moussues et CA3 via l'activation post-synaptique des orexine récepteurs 2 mais d'autre part n'inhibe que de façon mineure la synapse entre les collatérales de Schaffer et CAI et n'affecte pas les autres synapses impliquant CA3. J'ai également démontré que la sensibilité des NMDARs à l'orexine A dépend de sa concentration endogène qui fluctue durant le cycle éveil-sommeil. En effet, lorsque les coupes d'hippocampes sont préparées durant la période active de l'animal correspondant à un niveau endogène d'orexine élevé, l'application exogène d'orexine A n'a aucun effet sur les courants dépendants de l'activation des NMDARs. Cependant, l'injection dans le péritoine, durant la phase active de l'animal, d'un antagoniste des orexine récepteurs, l'almorexant, va supprimer l'effet inhibiteur de l'orexine A. Les résultats de ma thèse suggèrent donc que le système orexinergique module les informations véhiculées par les NMDARs via des voies de signalisation sélectives de l'hippocampe en fonction du moment de la journée. La modulation orexinergique des NMDARs au niveau des fibres moussues diminue ainsi l'excitabilité du circuit hippocampal et pourrait entraver les mécanismes liés à la formation de la mémoire, potentiellement après de longues périodes d'éveil.