978 resultados para Code-division Multiple Access


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geological, petrochemical, and geochemical data are reported for volcanic rocks of a Cretaceous pull-apart basin in the Tan Lu strike-slip system, Asian continental margin. A comparison of these volcanic rocks with magmatic rocks from typical Cenozoic transform margins in the western North America and rift zones of Korea made it possible to distinguish some indicator features of transform-margin volcanic rocks. Magmatic rocks from strike-slip extension zones bear island-arc, intraplate, and occasionally depleted MORB geochemical signatures. In addition to calc-alkaline rocks there are bimodal volcanic series. The rocks are characterized by high K2O, MgO, and TiO2 contents. They show variable enrichment in LILE relative to HFSE, which is typical of island-arc magmas. At the same time they are rich in compatible transition elements, which is a characteristic of intraplate magmas. Trace element distribution patterns normalized to MORB or primitive mantle usually show a negative Ta-Nb anomaly typical of suprasubduction settings. Their Ta/Nb ratio is lower, whereas Ba/Nb, Ba/La, and La/Yb ratios are higher than those of some MORB and OIB. In terms of trace element systematics, for example, Ta-Th-Hf, Ba/La-(Ba/La)_n, (La/Sm)_n-La/Hf, and others, they fall within the area of mixing of magmas from several sources (island arc, intraplate, and depleted reservoirs). Magmatic rocks of transform settings show a sigmoidal chondrite-normalized REE distribution pattern with a negative slope of LREE, depletion in MREE, and an enriched or flat HREE pattern. Magmas with mixed geochemical characteristics presumably originated in a transform margin setting in local extension zones under influence of mantle diapirs, which caused metasomatism and melting of the lithosphere at different levels, and mixing of melts from different sources in variable proportions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leg 61 of the Deep Sea Drilling Project (DSDP) was concerned with drilling a single continuously cored multiple re-entry hole at site 462 in the Central Nauru Basin (Fig. 1). Preliminary results of this drilling, which penetrated more than 1 km beneath the sea floor, were presented earlier. One major result was the discovery of a late Cretaceous off-ridge volcanic/intrusive complex of basaltic composition and great thickness (>500 m). We now present trace element abundance data for these basalts. Results of the drilling provide further support for a relatively long-lived thermal and magmatic event in the late Cretaceous resulting in voluminous and widespread magmatism in the central and western Pacific consistent with earlier suggestions. The trace element data show that most of the rocks produced during this event have trace element characteristics intermediate between those of normal and transitional mid-ocean ridge basalts (N- and T-type MORB) and different from Hawaiian basalts. These results indicate that basalts which are depleted in light rare earth elements (LREE) relative to the heavy REE may, in certain conditions, be erupted as voluminous intra-plate eruptions far from active ridge crests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to its strong gradient in salinity and small temperature gradient the Mediterranean provides an ideal setting to study the impact of salinity on the incorporation of Mg into foraminiferal tests. We have investigated tests of Globorotalia inflata and Globigerina bulloides in plankton tow and core top samples from the Western Mediterranean using ICP-OES for bulk analyses and LA-ICP-MS for analyses of individual chambers in single specimens. Mg/Ca observed in G. inflata are consistent with existing calibrations, whereas G. bulloides had significantly higher Mg/Ca than predicted, particularly in core top samples from the easterly stations. Scanning Electron Microscopy and Laser Ablation ICP-MS revealed secondary overgrowths on some tests, which could explain the observed high core top Mg/Ca. We suggest that the Mediterranean intermediate and deep water supersaturated with respect to calcite cause these overgrowths and therefore increased bulk Mg/Ca. However, the different species are influenced by diagenesis to different degrees probably due to different test morphologies. Our results provide new perspectives on reported anomalously high Mg/Ca in sedimentary foraminifera and the applicability of the Mg/Ca paleothermometry in high salinity settings, by showing that (1) part of the signal is generated by precipitation of inorganic calcite on the foraminifer test due to increased calcite saturation state of the water and (2) species with high surface-to-volume shell surfaces are potentially more affected by secondary Mg-rich calcite encrustation.