963 resultados para Cobalt oxides
Resumo:
Copper, aluminum and iron concentrations were determined in four geochemical fractions of three different basaltic soils from the northwest region of the Parana State, Brazil. The fractions examined were the reducible manganese dioxide and amorphous iron oxide, crystaline iron oxide, organic and residual. Metal concentrations were determined in the extracts by flame atomic absorption spectrophotometry. High Fe concentrations were extracted from the crystalline iron oxide (>20%), as well as the amorphous iron oxide (>12%). Copper was extracted from the amorphous and crystalline iron oxides in the range 5 to 12%, but low concentrations were bound to organic matter. Low concentrations of aluminum were extracted (<8%) from the amorphous and crystaline iron oxides, and organic matter. High concentrations of aluminum were found in the residual fraction.
Resumo:
Particles of porous silica or other solvent resistent inorganic oxides can be functionalized by aliphatic (e.g., C-8 or C-18) or other groups to give stationary phases for use in reversed phase HPLC. The functionalization can be done by bonding of individual groups to the surface of the support particles, by producing an organic polymeric film from pre-polymers, or by adsorbing/immobilizing pre-formed polymers on the surfaces. These three types of functionalization are reviewed.
Resumo:
Background: Documenting the distribution of radiotherapy departments and the availability of radiotherapy equipment in the European countries is an important part of HERO the ESTRO Health Economics in Radiation Oncology project. HERO has the overall aim to develop a knowledge base of the provision of radiotherapy in Europe and build a model for health economic evaluation of radiation treatments at the European level. The aim of the current report is to describe the distribution of radiotherapy equipment in European countries. Methods: An 84-item questionnaire was sent out to European countries, principally through their national societies. The current report includes a detailed analysis of radiotherapy departments and equipment (questionnaire items 2629), analyzed in relation to the annual number of treatment courses and the socio-economic status of the countries. The analysis is based on validated responses from 28 of the 40 European countries defined by the European Cancer Observatory (ECO). Results: A large variation between countries was found for most parameters studied. There were 2192 linear accelerators, 96 dedicated stereotactic machines, and 77 cobalt machines reported in the 27 countries where this information was available. A total of 12 countries had at least one cobalt machine in use. There was a median of 0.5 simulator per MV unit (range 0.31.5) and 1.4 (range 0.44.4) simulators per department. Of the 874 simulators, a total of 654 (75%) were capable of 3D imaging (CT-scanner or CBCToption). The number of MV machines (cobalt, linear accelerators, and dedicated stereotactic machines) per million inhabitants ranged from 1.4 to 9.5 (median 5.3) and the average number of MV machines per department from 0.9 to 8.2 (median 2.6). The average number of treatment courses per year per MV machine varied from 262 to 1061 (median 419). While 69% of MV units were capable of IMRT only 49% were equipped for image guidance (IGRT). There was a clear relation between socio-economic status, as measured by GNI per capita, and availability of radiotherapy equipment in the countries. In many low income countries in Southern and Central-Eastern Europe there was very limited access to radiotherapy and especially to equipment for IMRT or IGRT. Conclusions: The European average number of MV machines per million inhabitants and per department is now better in line with QUARTS recommendations from 2005, but the survey also showed a significant heterogeneity in the access to modern radiotherapy equipment in Europe. High income countries especially in Northern-Western Europe are well-served with radiotherapy resources, other countries are facing important shortages of both equipment in general and especially machines capable of delivering high precision conformal treatments (IMRT, IGRT)
Resumo:
The study of the reactions of organometallic complexes with the surfaces of inorganic oxides, zeolites and metals constitutes the basis of Surface Organometallic Chemistry (SOMC). The basic rules of organometallic chemistry are often valid when applied to surfaces and well-defined surface organometallic complexes can be obtained. These complexes can be used as heterogeneous catalysts or, by controlled reactions, can be transformed in other species useful for a given catalytic reaction. In some cases, these catalysts exhibit higher activity and/or selectivity than their analogous molecular complexes.
Resumo:
The conversion of glycerol in supercritical water (SCW) was studied at 510-550 °C and a pressure of 350 bars using both a bed of inert and non-porous ZrO2 particles (hydrothermal experiments), and a bed of a 1% Ru/ZrO2 catalyst. Experiments were conducted with a glycerol concentration of 5 wt% in a continuous isothermal fixed-bed reactor at a residence time between 2 and 10 s. Hydrothermolysis of glycerol formed water-soluble products such as acetaldehyde, acetic acid, hydroxyacetone and acrolein, and gases like H2, CO and CO2. The catalyst enhanced the formation of acetic acid, inhibited the formation of acrolein, and promoted gasification of the glycerol decomposition products. Hydrogen and carbon oxides were the main gases produced in the catalytic experiments, with minor amounts of methane and ethylene. Complete glycerol conversion was achieved at a residence time of 8.5 s at 510 °C, and at around 5 s at 550 °C with the 1 wt% Ru/ZrO2 catalyst. The catalyst was not active enough to achieve complete gasification since high yields of primary products like acetic acid and acetaldehyde were still present. Carbon balances were between 80 and 60% in the catalytic experiments, decreasing continuously as the residence time was increased. This was attributed partially to the formation of methanol and acetaldehyde, which were not recovered and analyzed efficiently in our set-up, but also to the formation of carbon deposits. Carbon deposition was not observed on the catalyst particles but on the surface of the inert zirconia particles, especially at high residence time. This was related to the higher concentration of acetic acid and other acidic species in the catalytic experiments, which may polymerize to form tar-like carbon precursors. Because of carbon deposition, hydrogen yields were significantly lower than expected; for instance at 550 °C the hydrogen yield potential was only 50% of the stoichiometric value.
Resumo:
In this thesis, cleaning of ceramic filter plates clogged by iron oxides was studied. Oxalic acid is considered as the most effective cleaning agent for the plates fouled by iron oxides, but when using oxalic acid, sparingly soluble calcium oxalate may be formed and it can blind the filter media. Suitability of another chemical for cleaning the plates clogged by iron oxides was studied in this thesis. The literature part was mostly about the properties of the chemical, about its reactions, industrial uses, safety issues etc. In the experimental part, the efficiency of the chemical for cleaning of the ceramic plates clogged by iron oxides was studied. Two kinds of plates were used in the experiments; the others were clogged by hematite and the others by magnetite. Both soaking and flow-through experiments were done. A suitable concentration, pH and temperature were tried to find in the experiments. Also the effect of ultrasound was studied. The efficiency of the cleaning was examined by measuring the permeability of the plates during the experiments. ICP-OES analysis was performed for determining the amount of dissolved iron in the washing solution. Some experiments were also done with oxalic acid. The results from the oxalic acid experiments were compared to the results from the experiments with the other chemical. In the experiments with the other chemical, the permeability increased more and the amounts of dissolved iron were larger. According to the results from the experiments, the method of application of the washing solutions had an impact on the washing results.
Resumo:
Chromium and potassium-doped iron oxides are widely used as industrial catalysts in the dehydrogenation of ethylbenzene to produce styrene. They have several advantages but deactivate with time, because of the loss of potassium. Also, they are toxic due to chromium compounds. Therefore there is a need for developing alternative non toxic catalysts without potassium. Then, iron and aluminum compounds were prepared by different methods in this work. Different phases were produced depending on the preparation method. Aluminum-doped hematite was more active and selective to styrene than the aluminum ferrite. Aluminum acts both as textural and structural promoter in the catalysts.
Resumo:
Työssä tutkittiin sinkin uutossa käytettävän di(2-etyyliheksyyli)fosforihappo (D2EHPA) -uuttoreagenssin faasikäyttäytymistä ja miten laimentimen koostumus, lämpötila ja orgaanisen faasin sinkkipitoisuus vaikuttavat faasitasapainoon. Laimentimen vaikutuksen havaittiin olevan pientä, kun taas lämpötilan nostaminen yli huoneenlämpötilan leventää faasidiagrammin yksifaasialuetta. Pienet orgaanisen faasin sinkkipitoisuudet eivät juuri vaikuta faasitasapainoon. Sinkin ja D2EHPA:n moolisuhteen ollessa välillä 0,1–0,2 kompleksin rakenne ilmeisesti muuttuu. Sinkkipitoisuuden kasvaessa yksifaasialue muodostuu pienemmillä ammoniakkimäärillä. Suurilla orgaanisen faasin sinkkipitoisuuksilla ja ammoniakkimäärillä muodostuu orgaanisen faasin ja vesifaasin välille kolmas nestefaasi. D2EHPA:n (40 p %) vesipitoisuuden ja viskositeetin pH riippuvuutta tutkittiin, kun laimentimena oli alifaattinen hiilivetyliuotin. Nostettaessa pH yli 3,5:n uuttoreagenssi alkoi muodostaa käänteismisellejä, jolloin orgaanisen faasin vesipitoisuus ja viskositeetti kasvoivat eksponentiaalisesti. Sinkin mukana uuttautuu epäpuhtauksia kuten Al3+, Co2+, Cu2+, Na+, Ni2+, Cl- ja F-. Takaisinuuton kautta epäpuhtaudet joutuvat talteenottoelektrolyysiin, jossa ne voivat vaikuttaa tuotteen laatuun ja laskea virtahyötysuhdetta. Tarkoituksena oli tutkia väheneekö epäpuhtauksien myötäuuttautuminen jollakin tietyllä sinkin latausasteella. Fluoridin ja kuparin uuttautumisen havaittiin vähenevän vasta, kun sinkin pitoisuus orgaanisessa faasissa oli yli 20 g/L lämpötilasta riippumatta. Fluoridi uuttautuu mahdollisesti alumiinikompleksina ja/tai fluorihappona. Koboltin ja nikkelin myötäuuttautumisen havaittiin vähenevän, kun sinkin latausaste oli yli 10 g/L. Natrium ja kloridi eivät myötäuuttautuneet.
Resumo:
The present experiment describes the preparation, characterization of n-butyl(pyridil)cobaloxime complex and its electrochemical property. The infrared and uv-visible absorption spectra were used to characterize the complex obtained. The infrared spectrum of the compound showed characteristics bands that indicated the formation of the Co-C chemical bond formation. The electronic absorption spectrum in acetonitrile showed transition bands attributed to p-p*, metal-to-ligand charge transfer, d-d transitions and charge transfer Co-C. The electrochemical property was investigated by the pulse differential voltammetry technique. Two oxidation processes: Co(I)/Co(II) at -423 mV and Co(II)/Co(III) at 752 mV were observed.
Resumo:
Simultaneous oxidation/co-precipitation of an equimolar mixture of La(III) and Co(II) nitrates and La(III) nitrate and Mn(II) chloride afforded a hydroxide gel, which was converted to LaCoO3 and LaMnO3 on calcination at 600 °C. After calcination, the obtained perovskites have been characterised by X-ray diffraction (XRD), X- ray photoelectron spectroscopy (XPS), thermogravimetric analysis (DTA - TGA) and BET specific surface determination. Specific surface areas of perovskites were 12 - 60 m²/g. XRD analysis showed that LaCoO3 and LaMnO3 are simple phase perovskite - type oxides. Traces of LaOCl, in addition to the perovskite were detected in the LaMnO3. The catalytic behavior was examined in the propane and CO oxidation. The LaCoO3 catalyst was more active to CO2 than the LaMnO3 catalyst.
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.
Resumo:
Passive films formed in bicarbonate solutions on carbon steel, chromium steel and high speed steel have been characterized by XPS. The passive films formed on chromium and high speed steels showed superior protective properties than those formed on carbon steel. It was confirmed by XPS that the steel composition influences the passive film composition. Chromium oxide and hydroxide, as well as molybdenum and tungsten oxides and hydroxides are present in the passive film of chromium steel and high speed steel, respectively, besides iron oxide and hydroxide. The more complex composition of the oxide film on high speed steel explains its electrochemical behaviour and highest corrosion resistance.
Resumo:
Sand samples collected from two sampling sites on Guarapari and Iriri beaches, state of Espírito Santo, Brazil, were studied in an attempt to better describe their chemical and mineralogical compositions and radioactive behaviors. The sands were found to contain about 6 (Guarapari) and 2 dag kg-1 (Iriri) of rare earth and thorium that, if allocated to the monazite-(Ce) structure, lead to the averaged formulae Ce3+0,494Gd3+0,012La3+0,209Nd3+0,177Pr3+0,040Sm3+0,024Th4+0,033 (PO4) and Ce3+0,474La3+0,227Nd3+0,190Pr3+0,044Sm3+0,032Th4+0,024 (PO4). From Mössbauer spectroscopy data, the magnetic fractions of these sands were found to contain stoichiometric hematite (47.4 dag kg-1, from Guarapari, and 25.1 dag kg-1, from Iriri) and magnetite (44.1 and 58.8 dag kg-1). The specific alpha and beta radiation activities were also measured for both samples.
Resumo:
The silica gel was obtained from sand and its surface was modified with POCl3 to produce Si-Cl bonds on the silica surface. Ethylenediamine was covalently bonded onto the chlorinated silica surface. The adsorption of the chlorides of divalent cobalt, nickel and copper was qualitatively studied to show that the bonding of ethylenediamine onto the silica gel surface produces a solid base capable of chelating metal ions from solution. The experiments illustrate the extraction of silica gel, its reactivity, the development of modified surfaces and its application in removing metal ions from water and are deigned for undergraduate inorganic chemistry laboratories.
Resumo:
The development of cobalt catalysts to produce hydrogen from ethanol is the goal of this investigation. Co/Al2O3 catalysts were prepared by impregnation and characterized by atomic absorption, nitrogen adsorption, X-ray diffraction, Raman spectroscopy, temperature programmed reduction and carbon analysis. The catalysts contained Co3O4 oxide and Co3+ and Co2+ species interacting with alumina. The cobalt load affects the crystal size and the crystalline structure and higher Co loads influence the reaction mechanism, changing the selectivity of the catalysts, decreasing the amount of CO produced and avoiding the formation of products catalyzed by the support. The ethanol conversion was 50-70% with 10-<1% of CO in the hydrogen.