959 resultados para Clupea harengus abundance as Nautical Area Scattering Coefficient
Resumo:
Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water > 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long-term record of ostracode assemblages from kastenlot core PS2200-5 (1073 m water depth) from the Morris Jesup Rise indicates a quasi-cyclic pattern of water mass changes during the last 300 kyr. Interglacial ostracode assemblages corresponding to oxygen isotope stages 1, 5, and 7 indicate rapid changes in dissolved oxygen and productivity during glacial-interglacial transitions.
Resumo:
Palmer Deep is a series of three glacially overdeepened basins on the Antarctic Peninsula shelf, ~20 km southwest of Anvers Island. Site 1098 (64°51.72'S, 64°12.48'W) was drilled in the shallowest basin, Basin I, at 1012 m water depth. The sediment recovered was primarily laminated, siliceous, biogenic, pelagic muds alternating with siliciclastic hemipelagic sediments (Barker, Camerlenghi, Acton, et al., 1999). Sedimentation rates of 0.1725 cm/yr in the upper 25 m and 0.7-0.80 cm/yr in the lower 25 m of the core have been estimated from 14C (Domack et al., 2001). The oldest datable sediments have an age of ~13 ka and were underlain by diamicton sediments of the last glacial maximum (Domack et al., 2001). The large-scale water-mass distribution and circulation in the vicinity of Palmer Deep is dominated by Circumpolar Deep Water (CDW) below 200 m (Hofmann et al., 1996). Palmer Deep is too far from the coast to be influenced by glacial meltwater and cold-tongue generation associated with it (Domack and Williams, 1990; Dixon and Domack, 1991). Circulation patterns in the Palmer Deep area are not well understood, but evidence suggests southward flow across Palmer Deep from Anvers Island to Renaud Island (Kock and Stein, 1978). The water south of Anvers Island is nearly open with loose pack ice from February through May. The area is covered with sea ice beginning in June (Gloersen et al., 1992; Leventer et al., 1996). Micropaleontologic data from the work of Leventer et al. (1996) on a 9-m piston core has revealed circulation and climate patterns for the past 3700 yr in the Palmer Deep. The benthic foraminifer assemblage is dominated by two taxa, Bulimina aculeata and Bolivina pseudopunctata, which are inversely related. High relative abundances of B. aculeata occur cyclically over a period of ~230 yr. The assemblage associated with high abundance of B. aculeata in Palmer Deep resembles that from the Bellingshausen shelf, which is associated with CDW. In addition to the faunal evidence, hydrographic data indicate incursions of CDW into Palmer Deep (Leventer et al., 1996). A distinctive diatom assemblage dominated by a single genus was associated with peaks in B. aculeata, whereas a few different assemblages were associated with lows in B. aculeata. Leventer et al. (1996) interpreted the variability in diatom assemblages as an indication of changes in productivity associated with changes in water column stability. Abelmann and Gowing (1997) studied the horizontal and vertical distributions of radiolarians in the Atlantic sector of the Southern Ocean. They show that the spatial distribution of radiolarian assemblages reflects hydrographic boundaries. In a transect from the subtropical Atlantic to polar Antarctic zones, radiolarians in the upper 1000 m of the water column occurred in distinct surface and deep-living assemblages related to water depth, temperature, salinity, and nutrient content. Living assemblages resembled those preserved in underlying surface sediments (Abelmann and Gowing, 1997). Circumantarctic coastal sediments from neritic environments contained a distinctive assemblage dominated by the Phormacantha hystrix/Plectacantha oikiskos group and Rhizoplegma boreale (Nishimura et al., 1997). Low diversity and species compositions distinguished the coastal sediments from the typical pelagic Antarctic assemblages. Factors that controlled the assemblages were water depth, proximity to the coast, occurrence of sea ice, and steepness of topography, rather than temperature and salinity. Nishimura et al. (1997) found a gradient of sorts from deep-water sites containing diverse assemblages typical of pelagic environments to coastal sites with low diversity assemblages dominated by P. hystrix/P. oikiskos group and R. boreale. In general, sites between these two extremes had increased proportions of the coastal assemblage with decreasing water depth (Nishimura et al., 1997). At a site near Hole 1098 (GC905), they showed that the relative abundance of the coastal assemblage increased downcore (Nishimura et al., 1997). The purpose of the research presented here was to make a cursory investigation into the radiolarian assemblages as possible paleoenvironmental indicators.
Resumo:
[EN] The main nesting area for loggerhead turtles in the eastern Atlantic is in the Cape Verde Islands, largely restricted to the island of Boa Vista. Extensive monitoring demonstrated a globally significant population for the species despite a sustained high level of anthropogenic take of nesting females for local consumption. Through an extensive stratified monitoring program across the island in the seasons 2007-2009, we estimated a total of 13955, 12028 and 19950 clutches in the 3 years, respectively. These values indicate that the mean number of nesting females averaged 3700. Considering that a female breed, on average, every 2.4 years, we estimate that the overall number of adult females in the population during these three seasons was 8900.
Resumo:
Conservation and management measures for exploited fish species rely on our ability to monitor variations in population abundance. In the case of the eastern stock of Atlantic bluefin tuna (ABFT), recent changes in management policies have strongly affected the reliability of fishery-dependent indicators due to drastic changes in fishing season/area, fisheries selectivity and strategy. However, fishery-independent indices of abundance are rare for large pelagic fish, and obtaining them is often costly and labor intensive. Here, we show that scientific aerial surveys are an appropriate tool for monitoring juvenile bluefin tuna abundance in the Mediterranean. We present an abundance index based on 62 aerial surveys conducted since 2000, using 2 statistical approaches to deal with the sampling strategy: line and strip transects. Both approaches showed a significant increase in juvenile ABFT abundance in recent years, resulting from the recovery plan established in 2007. Nonetheless, the estimates from the line transect method appear to be more robust and stable. This study provides essential information for fisheries management. Expanding the spatial coverage to other nursery grounds would further increase the reliability and representativeness of this index.
Resumo:
A new type of space debris was recently discovered by Schildknecht in near -geosynchronous orbit (GEO). These objects were later identified as exhibiting properties associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness magnitudes (light curve), high rotation rates and composition properties (albedo, amount of specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer insulation (MLI). Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that their shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time. This thesis proposes a simple effective flexible model of the thin, deformable membrane with two different methods. Firstly, this debris is modelled with Finite Element Analysis (FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is constructed with beam elements consisting 2 nodes and each node has six degrees of freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the debris based on multibody dynamics theory call “Multibody model” is modelled as a series of lump masses, connected through flexible joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account with lump masses in the joints. The dynamic equations for the masses, including the constraints defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. The physical properties of both flexible models required by the models (membrane density, reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both flexible membrane models are then propagated together with classical orbital and attitude equations of motion near GEO region to predict the orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields and self-shadowing effect. These results are then compared to two rigid body models (cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, the evolutions of orbital elements of the flexible models indicate the difference of inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable cross-section area due to a deformation over time. Then, the Monte Carlo simulations by varying initial attitude dynamics and deformed angle are investigated and compared with rigid models over 100 days. As the results of the simulations, the different initial conditions provide unique orbital motions, which is significantly different in term of orbital motions of both rigid models. Furthermore, this thesis presents a methodology to determine the material dynamic properties of thin membranes and validates the deformation of the multibody model with real MLI materials. Experiments are performed in a high vacuum chamber (10-4 mbar) replicating space environment. A thin membrane is hinged at one end but free at the other. The free motion experiment, the first experiment, is a free vibration test to determine the damping coefficient and natural frequency of the thin membrane. In this test, the membrane is allowed to fall freely in the chamber with the motion tracked and captured through high velocity video frames. A Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. The forced motion experiment, the last test, is performed to determine the deformation characteristics of the object. A high power spotlight (500-2000W) is used to illuminate the MLI and the displacements are measured by means of a high resolution laser sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups are used for the validation of the flexible model by comparing with the experimental results of displacements and natural frequencies.
Resumo:
This paper aims to provide aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([O III] λ5007/Hβ)/([N II] λ6583/Hα) (O3N2) and log[N II] lambda 6583/Hα (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star-forming galaxies. We compute the median growth curves of Hα, Hα/Hβ, O3N2, and N-2 up to 2.5R(50) and 1.5 disk R-eff. These distances cover most of the optical spatial extent of the CALIFA galaxies. The growth curves simulate the effect of observing galaxies through apertures of varying radii. We split these growth curves by morphological types and stellar masses to check if there is any dependence on these properties. The median growth curve of the Hα flux shows a monotonous increase with radius with no strong dependence on galaxy inclination, morphological type, and stellar mass. The median growth curve of the Hα/HβH ratio monotonically decreases from the center toward larger radii, showing for small apertures a maximum value of ≈10% larger than the integrated one. It does not show any dependence on inclination, morphological type, and stellar mass. The median growth curve of N-2 shows a similar behavior, decreasing from the center toward larger radii. No strong dependence is seen on the inclination, morphological type, and stellar mass. Finally, the median growth curve of O3N2 increases monotonically with radius, and it does not show dependence on the inclination. However, at small radii it shows systematically higher values for galaxies of earlier morphological types and for high stellar mass galaxies. Applying our aperture corrections to a sample of galaxies from the SDSS survey at 0.02 ≤ z ≤ 0.3 shows that the average difference between fiber-based and aperture-corrected oxygen abundances, for different galaxy stellar mass and redshift ranges, reaches typically to ≈11%, depending on the abundance calibration used. This average difference is found to be systematically biased, though still within the typical uncertainties of oxygen abundances derived from empirical calibrations. Caution must be exercised when using observations of galaxies for small radii (e.g., below 0.5 R_eff) given the high dispersion shown around the median growth curves. Thus, the application of these median aperture corrections to derive abundances for individual galaxies is not recommended when their fluxes come from radii much smaller than either R_50 or R_eff.
Resumo:
A população de cervo-do-pantanal (Blastocerus dichotomus) está drasticamente reduzida no Brasil. O nosso objetivo foi o de estimar a abundância do cervo-do-pantanal na bacia do Rio Paraná e discutir a metodologia aplicada. Os resultados darão suporte para uma análise do impacto do enchimento da represa de Porto Primavera sobre essa população. Sessenta e nove animais foram registrados através de sobrevôo utilizando-se a metodologia de transecção linear com amostragem das distâncias. Os dados não corrigidos resultaram em uma densidade estimada de 0,0035ind/ha e uma população de 636 indivíduos. A correção de g para os animais que não foram vistos apresentou uma densidade de 0,0049 ind/ha e uma abundância de 896 (CV=0,27) indivíduos. A metodologia foi aplicada com sucesso na estimativa de cervo-do-pantanal. Esse resultado é importante para avaliarmos a população do cervo-do-pantanal na área e para futuramente analisarmos o impacto do enchimento da represa.
Resumo:
Sedentary consumers play an important role on populations of prey and, hence, their patterns of abundance, distribution and coexistence on shores are important to evaluate their potential influence on ecosystem dynamics. Here, we aimed to describe their spatio-temporal distribution and abundance in relation to wave exposure in the intertidal rocky shores of the south-west Atlantic to provide a basis for further understanding of ecological processes in this system. The abundance and composition of the functional groups of sessile organisms and sedentary consumers were taken by sampling the intertidal of sheltered and moderately exposed shores during a period of one year. The sublittoral fringe of sheltered areas was dominated by macroalgae, while the low midlittoral was dominated by bare rock and barnacles. In contrast, filter-feeding animals prevailed at exposed shores, probably explaining the higher abundance of the predator Stramonita haemastoma at these locations. Limpets were more abundant at the midlittoral zone of all shores while sea urchins were exclusively found at the sublittoral fringe of moderately exposed shores, therefore, adding grazing pressure on these areas. The results showed patterns of coexistence, distribution and abundance of those organisms in this subtropical area, presumably as a result of wave action, competition and prey availability. It also brought insights on the influence of top-down and bottom-up processes in this area.
Resumo:
Benefits of marine protected areas depend on local ecological and socio-cultural aspects which are critical to the success of the protection measures. In particular, before-after comparisons are indispensable to disentangle the effects of protection from those of different physical and ecological characteristics among areas. Using underwater visual surveys, we assessed whether biomass and abundance of temperate reef fish assemblages and target invertebrates increased inside a no-take area in the Arrabida Marine Park (Portugal) 3 to 4 yr after its establishment. Data were compared to a previous study, conducted 10 yr before protection was effective. Control-effect comparisons after reserve establishment showed a positive response of legal-size demersal fish and below legal-size target invertebrates. The first evidence of protection was found in biomass but not in numbers. Non-target groups and below legal-size demersal fish had a significant interaction among reserve and habitat complexity indices for either density or biomass, suggesting a lack of a reserve effect. Before-after comparisons revealed non-significant patterns of increase in numbers of target species compared to non-target ones. The most important commercial species showed the largest increase in density after protection was established. Significantly higher abundances and proportionally heavier individuals of these species were also found inside the reserve in the control-effect comparisons. These findings are reinforced by an increasing trend in landings which are consistent with the early detection of a reserve effect.
Resumo:
The aim of this study was to identify how pitch area-restrictions affects the tactical behavior, physical and physiological performances of players during soccer large-sided games. A 10 vs. 9 large-sided game was performed under three experimental conditions: (i) restricted-spacing, the pitch was divided into specific areas where players were assigned and they should not leave it; (ii) contiguous-spacing, the pitch was divided into specific areas where the players were only allowed to move to a neighboring one; (iii) free-spacing, the players had no restrictions in space occupation. The positional data were used to compute players’ spatial exploration index and also the distance, coefficient of variation, approximate entropy and frequency of near-in-phase displacements synchronization of players’ dyads formed by the outfield teammates. Players’ physical and physiological performances were assessed by the distance covered at different speed categories, game pace and heart rate. Most likely higher values were found in players’ spatial exploration index under free-spacing conditions. The synchronization between dyads’ displacements showed higher values for contiguous-spacing and free-spacing conditions. In contrast, for the jogging and running intensity zones, restricted-spacing demanded a moderate effect and most likely decrease compared to other scenarios (~20-50% to jogging and ~60-90% to running). Overall, the effects of limiting players’ spatial exploration greatly impaired the co-adaptation between teammates’ positioning while decreasing the physical and physiological performances. These results allow for a better understanding of players’ decision-making process according to specific task rules and can be relevant to enrich practice task design, such that coaches acknowledge the differential effect by using specific pitch-position areas restrictions.