983 resultados para Clone


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We generated transgenic mice expressing chimeric receptors, which comprise extracellular domains of the human granulocyte–macrophage colony-stimulating factor (hGM-CSF) receptor and transmembrane and cytoplasmic domains of the mouse leukemia inhibitory factor receptor. In suspension cultures of lineage-negative (Lin−), 5-fluorouracil-resistant bone marrow cells of the transgenic mice, a combination of hGM-CSF and stem cell factor (SCF) induced exponential expansions of mixed colony-forming unit. The combination of hGM-CSF and SCF was effective on enriched, Lin−Sca-1+c-kit+ progenitors and increased either mixed colony-forming unit or cobblestone area–forming cells. In case of stimulation with hGM-CSF and SCF, interleukin-6 (IL-6) and SCF, or IL-11 and SCF, the most efficient expansion was achieved with hGM-CSF and SCF. When Lin−Sca-1+c-kit+CD34− further enriched progenitors were clone sorted and individually incubated in the presence of SCF, hGM-CSF stimulated a larger number of cells than did IL-6, IL-6 and soluble IL-6 receptor (IL-6R), or IL-11. These data suggest the presence of IL-6Rα-, IL-11Rα-, and gp130-low to -negative primitive hematopoietic progenitors. Such primitive progenitors are equipped with signal transduction molecules and can expand when these chimeric receptors are genetically introduced into the cells and stimulated with hGM-CSF in the presence of SCF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence has been presented both for and against obligate retrograde movement of resident Golgi proteins through the endoplasmic reticulum (ER) during nocodazole-induced Golgi ministack formation. Here, we studied the nocodazole-induced formation of ministacks using phospholipase A2 (PLA2) antagonists, which have been shown previously to inhibit brefeldin A–stimulated Golgi-to-ER retrograde transport. Examination of clone 9 rat hepatocytes by immunofluorescence and immunoelectron microscopy revealed that a subset of PLA2 antagonists prevented nocodazole-induced ministack formation by inhibiting two different trafficking pathways for resident Golgi enzymes; at 25 μM, retrograde Golgi-to-ER transport was inhibited, whereas at 5 μM, Golgi-to-ER trafficking was permitted, but resident Golgi enzymes accumulated in the ER. Moreover, resident Golgi enzymes gradually redistributed from the juxtanuclear Golgi or Golgi ministacks to the ER in cells treated with these PLA2 antagonists alone. Not only was ER-to-Golgi transport of resident Golgi enzymes inhibited in cells treated with these PLA2 antagonists, but transport of the vesicular stomatitis virus G protein out of the ER was also prevented. These results support a model of obligate retrograde recycling of Golgi resident enzymes during nocodazole-induced ministack formation and provide additional evidence that resident Golgi enzymes slowly and constitutively cycle between the Golgi and ER.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have found conflicting associations between susceptibility to activation-induced cell death and the cell cycle in T cells. However, most of the studies used potentially toxic pharmacological agents for cell cycle synchronization. A panel of human melanoma tumor-reactive T cell lines, a CD8+ HER-2/neu-reactive T cell clone, and the leukemic T cell line Jurkat were separated by centrifugal elutriation. Fractions enriched for the G0–G1, S, and G2–M phases of the cell cycle were assayed for T cell receptor-mediated activation as measured by intracellular Ca2+ flux, cytolytic recognition of tumor targets, and induction of Fas ligand mRNA. Susceptibility to apoptosis induced by recombinant Fas ligand and activation-induced cell death were also studied. None of the parameters studied was specific to a certain phase of the cell cycle, leading us to conclude that in nontransformed human T cells, both activation and apoptosis through T cell receptor activation can occur in all phases of the cell cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An improved mammalian two-hybrid system designed for interaction trap screening is described in this paper. CV-1/EBNA-1 monkey kidney epithelial cells expressing Epstein–Barr virus nuclear antigen 1 (EBNA-1) were stably transfected with a reporter plasmid for GAL4-dependent expression of the green fluorescent protein (GFP). A resulting clone, GB133, expressed GFP strongly when transfected transiently with transcriptional activators fused to GAL4 DNA-binding domain with minimal background GFP expression. GB133 cells maintained plasmids containing the OriP Epstein–Barr virus replication origin that directs replication of plasmids in mammalian cells in the presence of the EBNA-1 protein. GB133 cells transfected stably with a model bait expressed GFP when further transfected transiently with an expression plasmid for a known positive prey. When the bait-expressing GB133 cells were transfected transiently with an OriP-containing expression plasmid for the positive prey together with excess amounts of empty vector, cells that received the positive prey were readily identified by green fluorescence in cell culture and eventually formed green fluorescent microcolonies, because the prey plasmid was maintained by the EBNA-1/Ori-P system. The green fluorescent microcolonies were harvested directly from the culture dishes under a fluorescence microscope, and total DNA was then prepared. Prey-encoding cDNA was recovered by PCR using primers annealing to the vector sequences flanking the insert-cloning site. This system should be useful in mammalian cells for efficient screening of cDNA libraries by two-hybrid interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lysophosphatidic acid (1-acyl-2-lyso-sn-glycero-3-phosphate, LPA) is a multifunctional lipid mediator found in a variety of organisms that span the phylogenetic tree from humans to plants. Although its physiological function is not clearly understood, LPA is a potent regulator of mammalian cell proliferation; it is one of the major mitogens found in blood serum. In Xenopus laevis oocytes, LPA elicits oscillatory Cl− currents. This current, like other effects of LPA, is consistent with a plasma membrane receptor-mediated activation of G protein-linked signal transduction pathways. Herein we report the identification of a complementary DNA from Xenopus that encodes a functional high-affinity LPA receptor. The predicted structure of this protein of 372 amino acids contains features common to members of the seven transmembrane receptor superfamily with a predicted extracellular amino and intracellular carboxyl terminus. An antisense oligonucleotide derived from the first 5–11 predicted amino acids, selectively inhibited the expression of the endogenous high-affinity LPA receptors in Xenopus oocytes, whereas the same oligonucleotide did not affect the low-affinity LPA receptor. Expression of the full-length cRNA in oocytes led to an increase in maximal Cl− current due to increased expression of the high-affinity LPA receptor, but activation of the low-affinity receptor was, again, unaffected. Oocytes expressing cRNA prepared from this clone showed no response to other lipid mediators including prostaglandins, leukotrienes, sphingosine 1-phosphate, sphingosylphosphorylcholine, and platelet-activating factor, suggesting that the receptor is highly selective for LPA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocular cicatricial pemphigoid (OCP) is an autoimmune disease that affects mainly conjunctiva and other squamous epithelia. OCP is histologically characterized by a separation of the epithelium from underlying tissues within the basement membrane zone. Immunopathological studies demonstrate the deposition of anti-basement membrane zone autoantibodies in vivo. Purified IgG from sera of patients with active OCP identified a cDNA clone from a human keratinocyte cDNA library that had complete homology with the cytoplasmic domain of β4-integrin. The sera recognized a 205-kDa protein in human epidermal, human conjunctiva, and tumor cell lysates that was identified as β4-integrin by its reaction with polyclonal and monoclonal antibodies to human β4-integrin. Sera from patients with bullous pemphigoid, pemphigus vulgaris, and cicatricial pemphigoid-like diseases did not recognize the 205-kDa protein, indicating the specificity of the binding. These data strongly implicate a role for human β4-integrin in the pathogenesis of OCP. It should be emphasized that multiple antigens in the basement membrane zone of squamous epithelia may serve as targets for a wide spectrum of autoantibodies observed in vesiculobullous diseases. Molecular definition of these autoantigens will facilitate the classification and characterization of subsets of cicatricial pemphigoid and help distinguishing them from bullous pemphigoid. This study highlights the function and importance of β4-integrin in maintaining the attachment of epithelial cells to the basement membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 (PBSF/SDF-1) is a member of the CXC group of chemokines that is initially identified as a bone marrow stromal cell-derived factor and as a pre-B-cell stimulatory factor. Although most chemokines are thought to be inducible inflammatory mediators, PBSF/SDF-1 is essential for perinatal viability, B lymphopoiesis, bone marrow myelopoiesis, and cardiac ventricular septal formation, and it has chemotactic activities on resting lymphocytes and monocytes. In this paper, we have isolated a cDNA that encodes a seven transmembrane-spanning-domain receptor, designated pre-B-cell-derived chemokine receptor (PB-CKR) from a murine pre-B-cell clone, DW34. The deduced amino acid sequence has 90% identity with that of a HUMSTSR/fusin, a human immunodeficiency virus 1 (HIV-1) entry coreceptor. However, the second extracellular region has lower identity (67%) compared with HUMSTSR/fusin. PB-CKR is expressed during embryo genesis and in many organs and T cells of adult mice. Murine PBSF/SDF-1 induced an increase in intracellular free Ca2+ in DW34 cells and PB-CKR-transfected Chinese hamster ovary (CHO) cells, suggesting that PB-CKR is a functional receptor for murine PBSF/SDF-1. Murine PBSF/SDF-1 also induced Ca2+ influx in fusin-transfected CHO cells. On the other hand, considering previous results that HIV-1 does not enter murine T cells that expressed human CD4, PB-CKR may not support HIV-1 infection. Thus, PB-CKR will be an important tool for functional mapping of HIV-1 entry coreceptor fusin and for understanding the function of PBSF/SDF-1 further.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Choline is an important metabolite in all cells due to the major contribution of phosphatidylcholine to the production of membranes, but it takes on an added role in cholinergic neurons where it participates in the synthesis of the neurotransmitter acetylcholine. We have cloned a suppressor for a yeast choline transport mutation from a Torpedo electric lobe yeast expression library by functional complementation. The full-length clone encodes a protein with 10 putative transmembrane domains, two of which contain transporter-like motifs, and whose expression increased high-affinity choline uptake in mutant yeast. The gene was called CTL1 for its choline transporter-like properties. The homologous rat gene, rCTL1, was isolated and found to be highly expressed as a 3.5-kb transcript in the spinal cord and brain and as a 5-kb transcript in the colon. In situ hybridization showed strong expression of rCTL1 in motor neurons and oligodendrocytes and to a lesser extent in various neuronal populations throughout the rat brain. High levels of rCTL1 were also identified in the mucosal cell layer of the colon. Although the sequence of the CTL1 gene shows clear homology with a single gene in Caenorhabditis elegans, several homologous genes are found in mammals (CTL2–4). These results establish a new family of genes for transporter-like proteins in eukaryotes and suggest that one of its members, CTL1, is involved in supplying choline to certain cell types, including a specific subset of cholinergic neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most human cancers are of monoclonal origin and display many genetic alterations. In an effort to determine whether clonal expansion itself could account for the large number of genetic alterations, we compared spontaneous transformation in cloned and uncloned populations of NIH 3T3 cells. We have reported that progressive transformation of these cells, which is driven by the stress of prolonged contact inhibition at confluence, occurs far more frequently in cultures of recent monoclonal origin than in their uncloned progenitors. In the present work we asked how coculturing six clones at early and late stages of progression would affect the dynamics of transformation in repeated rounds of confluence. When coculture started with clones in early stages of transformation, marked by light focus formation, there was a strong inhibition of the progression to the dense focus formation that occurred in separate cultures of the individual clones. In contrast, when coculture started after the individual clones had progressed to dense focus formation, there was selection of transformants from the clone producing the largest and densest foci. Mixing the cells of a single clone with a large excess of uncloned cells from a subline that was refractory to transformation markedly decreased the size of dense foci from clones in transit from light to dense focus formation, but had much less effect on foci from clones with an established capacity for dense focus formation. The major finding of protection against progression by coculturing clones in early stages of transformation suggests that the expansion of a rogue clone in vivo increasingly isolates many of its cells from genetically stabilizing interactions with surrounding clones. Such clonal isolation might account for the increase in mutation rates associated with the dysplasia in colorectal adenomas that signifies the transition between benign and malignant growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The RD114/simian type D retroviruses, which include the feline endogenous retrovirus RD114, all strains of simian immunosuppressive type D retroviruses, the avian reticuloendotheliosis group including spleen necrosis virus, and baboon endogenous virus, use a common cell-surface receptor for cell entry. We have used a retroviral cDNA library approach, involving transfer and expression of cDNAs from highly infectable HeLa cells to nonpermissive NIH 3T3 mouse cells, to clone and identify this receptor. The cloned cDNA, denoted RDR, is an allele of the previously cloned neutral amino acid transporter ATB0 (SLC1A5). Both RDR and ATB0 serve as retrovirus receptors and both show specific transport of neutral amino acids. We have localized the receptor by radiation hybrid mapping to a region of about 500-kb pairs on the long arm of human chromosome 19 at q13.3. Infection of cells with RD114/type D retroviruses results in impaired amino acid transport, suggesting a mechanism for virus toxicity and immunosuppression. The identification and functional characterization of this retrovirus receptor provide insight into the retrovirus life cycle and pathogenesis and will be an important tool for optimization of gene therapy using vectors derived from RD114/type D retroviruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzymes that are involved in the elongation of fatty acids differ in terms of the substrates on which they act. To date, the enzymes specifically involved in the biosynthesis of polyunsaturated fatty acids have not yet been identified. In an attempt to identify a gene(s) encoding an enzyme(s) specific for the elongation of γ-linolenic acid (GLA) (18:3n-6), a cDNA expression library was made from the fungus Mortierella alpina. The cDNA library constructed in a yeast expression vector was screened by measuring the expressed elongase activity [conversion of GLA to dihomo-GLA (20:3n-6)] from an individual yeast clone. In this report, we demonstrate the isolation of a cDNA (GLELO) whose encoded protein (GLELOp) was involved in the conversion of GLA to dihomo-GLA in an efficient manner (60% conversion). This cDNA contains a 957-nucleotide ORF that encodes a protein of 318 amino acids. Substrate specificity analysis revealed that this fungal enzyme acted also on stearidonic acid (18:4n-3). This report identifies and characterizes an elongase subunit that acts specifically on the two Δ6-desaturation products, 18:3n-6 and 18:4n-3. When this GLELO cDNA was coexpressed with M. alpina Δ5-desaturase cDNA in yeast, it resulted in the conversion of GLA to arachidonic acid (20:4n-6) as well as the conversion of stearidonic acid to eicosopentaenoic acid (20:5n-3). Thus, this GLELO gene may play an critical role in the bio-production of both n-6 and n-3 polyunsaturated fatty acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cDNA clone encoding a lipase (lipolytic acyl hydrolase) expressed at the onset of petal senescence has been isolated by screening a cDNA expression library prepared from carnation flowers (Dianthus caryophyllus). The cDNA contains the lipase consensus sequence, ITFAGHSLGA, and encodes a 447-amino acid polypeptide with a calculated molecular mass of 50.2 kDa that appears to be a cytosolic protein. Over-expression of the clone in Escherichia coli yielded a protein of the expected molecular weight that proved capable of deesterifying fatty acids from p-nitrophenylpalmitate, tri-linolein, soybean phospholipid, and Tween in both in vitro and in situ assays of enzyme activity. The abundance of the lipase mRNA increases just as carnation flowers begin to senesce, and expression of the gene is also induced by treatment with ethylene. Southern blot analyses of carnation genomic DNA have indicated that the lipase is a single copy gene. The lipase gene is also expressed in carnation leaves and is up-regulated when the leaves are treated with ethylene. Deesterification of membrane lipids and ensuing loss of membrane structural integrity are well established early events of plant senescence, and the expression pattern of this lipase gene together with the lipolytic activity of its cognate protein indicate that it plays a fundamentally central role in mediating the onset of senescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mature immunologically competent dendritic cells are the most efficient antigen-presenting cells that powerfully activate T cells and initiate and sustain immune responses. Indeed, dendritic cells are able to efficiently capture antigens, express high levels of costimulatory molecules, and produce the combination of cytokines required to create a powerful immune response. They are also considered to be important in initiating autoimmune disease by efficiently presenting autoantigens to self-reactive T cells that, in this case, will mount a pathogenic autoimmune reaction. Triggering T cells is not a simple on–off procedure, as T cell receptor responds to minor changes in ligand with gradations of T cell activation and effector functions. These “misfit” peptides have been called Altered Peptide Ligands, and have been shown to have important biological significance. Here, we show that fully capable dendritic cells may present, upon natural antigen processing, a self-epitope with Altered Peptide Ligands features that can unexpectedly induce anergy in a human autoreactive T cell clone. These results indicate that presentation of a self-epitope by immunologically competent dendritic cells does not always mean “danger” and show a mechanism involved in the fine balance between activation and tolerance induction in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Persistent infection with hepatitis C virus (HCV) is among the leading causes of chronic liver disease. Previous studies suggested that genetic variation in hypervariable region 1 (HVR1) of the second envelope protein, possibly in response to host immune pressure, influences the outcome of HCV infection. In the present study, a chimpanzee transfected intrahepatically with RNA transcripts of an infectious HCV clone (pCV-H77C) from which HVR1 was deleted became infected; the ΔHVR1 virus was subsequently transmitted to a second chimpanzee. Infection with ΔHVR1 virus resulted in persistent infection in the former chimpanzee and in acute resolving infection in the latter chimpanzee. Both chimpanzees developed hepatitis. The ΔHVR1 virus initially replicated to low titers, but virus titer increased significantly after mutations appeared in the viral genome. Thus, wild-type HCV without HVR1 was apparently attenuated, suggesting a functional role of HVR1. However, our data indicate that HVR1 is not essential for the viability of HCV, the resolution of infection, or the progression to chronicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural killer (NK) cells express C-type lectin-like receptors, encoded in the NK gene complex, that interact with major histocompatibility complex class I and either inhibit or activate functional activity. Human NK cells express heterodimers consisting of CD94 and NKG2 family molecules, whereas murine NK cells express homodimers belonging to the Ly-49 family. The corresponding orthologues for other species, however, have not been described. In this report, we used probes derived from the expressed sequence tag database to clone C57BL/6-derived cDNAs homologous to human NKG2-D and CD94. Among normal tissues, murine NKG2-D and CD94 transcripts are highly expressed only in activated NK cells, including both Ly-49A+ and Ly-49A− subpopulations. Additionally, mNKG2-D is expressed in murine NK cell clones KY-1 and KY-2, whereas mCD94 expression is observed only in KY-1 cells but not KY-2. Last, we have finely mapped the physical location of the Cd94 (centromeric) and Nkg2d (telomeric) genes between Cd69 and the Ly49 cluster in the NK complex. Thus, these data indicate the expanding complexity of the NK complex and the corresponding repertoire of C-type lectin-like receptors on murine NK cells.