952 resultados para Clapboard-type internal circulating fluidized bed gasifier
Resumo:
Introduction. The hippocampal formation is a specific structure in the brain where neurogenesis occurs throughout adulthood and in which the neuronal cell loss causes various demential states. The main goal of this study was to verify whether fetal neural progenitor cells (NPCs) from transgenic rats expressing green fluorescent protein (GFP) retain the ability to differentiate into neuronal cells and to integrate into the hippocampal circuitry after transplantation. Methods. NPCs were isolated from E14 (gestational age: 14 days postconception) transgenic-Lewis and wild-type Sprague-Dawley rat embryos. Wild-type and transgenic cells were expanded and induced to differentiate into a neuronal lineage in vitro. Immunocytochemical and electrophysiological analysis were performed in both groups. GFP-expressing cells were implanted into the hippocampus and recorded electrophysiologically 3 months thereafter. Immunohistochemical analysis confirmed neuronal differentiation, and the yield of neuronal cells was determined stereologically. Results. NPCs derived from wild-type and transgenic animals are similar regarding their ability to generate neuronal cells in vitro. Neuronal maturity was confirmed by immunocytochemistry and electrophysiology, with demonstration of voltage-gated ionic currents, firing activity, and spontaneous synaptic currents. GFP-NPCs were also able to differentiate into mature neurons after implantation into the hippocampus, where they formed functional synaptic contacts. Conclusions. GFP-transgenic cells represent an important tool in transplantation studies. Herein, we demonstrate their ability to generate functional neurons both in vitro and in vivo conditions. Neurons derived from fetal NPCs were able to integrate into the normal hippocampal circuitry. The high yield of mature neurons generated render these cells important candidates for restorative approaches based on cell therapy.
Resumo:
Cells produce and use peptides in distinctive ways. In the present report, using isotope labeling plus semi-quantitative mass spectrometry, we evaluated the intracellular peptide profile of TAP1/beta 2m(-/-) (transporter associated with antigen-processing 1/beta 2 microglobulin) double-knockout mice and compared it with that of C57BL/6 wild-type animals. Overall, 92 distinctive peptides were identified, and most were shown to have a similar concentration in both mouse strains. However, some peptides showed a modest increase or decrease (similar to 2-fold), whereas a glycine-rich peptide derived from the C-terminal of neurogranin (KGPGPGGPGGAGGARGGAGGGPSGD) showed a substantial increase (6-fold) in TAP1/beta 2m(-/-) mice. Thus, TAP1 and beta 2microglobulin have a small influence on the peptide profile of neuronal tissue, suggesting that the presence of peptides derived from intracellular proteins in neuronal tissue is not associated with antigens of the class I major histocompatibility complex. Therefore, it is possible that these intracellular peptides play a physiological role.
Resumo:
Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the CNS, where it plays several pivotal roles in synaptic plasticity and neuronal survival. As a consequence, BDNF has become a key target in the physiopathology of several neurological and psychiatric diseases. Recent studies have consistently reported altered levels of BDNF in the circulation (i.e., serum or plasma) of patients with major depression, bipolar disorder, Alzheimer`s disease, Huntington`s disease and Parkinson`s disease. Correlations between serum BDNF levels and affective, cognitive and motor symptoms have also been described. BDNF appears to be an unspecific biomarker of neuropsychiatric disorders characterized by neurodegenerative changes.
Resumo:
Angiotensin II (Ang II) and vascular endothelial growth factor (VEGF) are important mediators of kidney injury in diabetes. Acute hyperglycemia increased synthesis of intrarenal Ang I and Ang II and resulted in activation of both Ang II receptors, AT1 and AT2, in the kidney. Losartan (specific AT1 antagonist) or PD123319 (specific AT2 antagonist) did not affect hyperglycemia but prevented activation of renal AT1 and AT2, respectively. In murine renal cortex, acute hyperglycemia increased VEGF protein but not mRNA content after 24 h, which suggested translational regulation. Blockade of AT2, but not AT1, prevented increase in VEGF synthesis by inhibiting translation of VEGF mRNA in renal cortex. Acute hyperglycemia increased VEGF expression in wild type but not in AT2 knockout mice. Binding of heterogeneous nuclear ribonucleoprotein K to VEGF mRNA, which stimulates its translation, was prevented by blockade of AT2, but not AT1. The Akt-mTOR-p70(S6K) signaling pathway, involved in the activation of mRNA translation, was activated in hyperglycemic kidneys and was blocked by the AT2 antagonist. Elongation phase is an important step of mRNA translation that is controlled by elongation factor 1A (eEF1A) and 2 (eEF2). Expression of eEF1A and activity of eEF2 was higher in kidney cortex from hyperglycemic mice and only the AT2 antagonist prevented these changes. To assess selectivity of translational control of VEGF expression, we measured expression of fibronectin (FN) and laminin beta 1 (lam beta 1): acute hyperglycemia increased FN expression at both protein and mRNA levels, indicating transcriptional control, and did not affect the expression of lam beta 1. To confirm results obtained with PD123319, we induced hyperglycemia in AT2 knockout mice and found that in the absence of AT2, translational control of VEGF expression by hyperglycemia was abolished. Our data show that acute hyperglycemia stimulates Ang II synthesis in murine kidney cortex, this leads to AT2 activation and stimulation of VEGF mRNA translation, via the Akt-mTOR-p70(S6K) signaling pathway. Our data show that exclusive translational control of protein expression in the kidney by acute hyperglycemia is not a general phenomenon, but do not prove that it is restricted to VEGF. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Differences in bone mineral density (BMD) patterns have been recently reported between multiple endocrine neoplasia type 1-related primary hyperparathyroidism (HPT/MEN1) and sporadic primary HPT However studies on the early and later outcomes of bone/renal complications in HPT/MEN1 are lacking In this cross sectional study performed in a tertiary academic hospital 36 patients cases with uncontrolled HPT from 8 unrelated MEN1 families underwent dual energy X ray absorptiometry (DXA) scanning of the proximal one third of the distal radius (1/3DR) femoral neck, total hip, and lumbar spine (LS) The mean age of the patients was 389 +/- 145 years Parathyroid hormone (PTH)/calcium values were mildly elevated despite an overall high percentage of bone demineralization (77 8%) In the younger group (<50 years of age) demineralization in the 1/3DR was more frequent more severe and occurred earlier (40% Z-score 1 81 +/- 0 26) The older group (>50 years of age) had a higher frequency of bone demineralization at all sites (p < 005) and a larger number of affected bone sites (p < 0001), and BMD was more severely compromised in the 1/3DR (p = 007) and LS (p= 002) BMD values were lower in symptomatic (88 9%) than in asymptomatic HPT patients (p < 006) Patients with long standing HPT (>10 years) and gastnnoma/HPT presented significantly lower 1/3DR BMD values Urolithiasis occurred earlier (<30 years) and more frequently (75%) and was associated with related renal comorbidities (50%) and renal insufficiency in the older group (33%) Bone mineral- and urolithiasis-related renal complications in HPT/MEN1 are early onset frequent extensive severe and progressive These data should be considered in the individualized clinical/surgical management of patients with MEN1 associated HPT (C) 2010 American Society for Bone and Mineral Research
Resumo:
Background: The role of platelets in hemostasis is well known, but few papers have reported their role in pain and edema induced by inflammatory agents. Objective: To evaluate the role of circulating platelets in the local injury induced by two diverse inflammatory agents, Bothrops jararaca venom (Bjv) and carrageenan. Methods: Rats were (i) rendered thrombocytopenic by administration of polyclonal anti-rat platelet IgG (ARPI) or busulfan, or (ii) treated with platelet inhibitors (aspirin or clopidogrel). Edema formation, local hemorrhage and the pain threshold were assessed after intraplantar injection of Bjv or carrageenan in rat hind paws. Additionally, whole platelets or platelet releasate were tested whether they directly induced hyperalgesia. Results: Platelet counts were markedly diminished in rats administered with either ARPI (+/- 88%) or busulfan (+/- 96%). Previous treatment with ARPI or busulfan slightly reduced edema induced by Bjv or carrageenan. Injection of Bjv, but not of carrageenan, induced a statistically significance increase in hemorrhage in the hind paws of thrombocytopenic rats. Remarkably, hyperalgesia evoked by Bjv or carrageenan was completely blocked in animals treated with ARPI or busulfan, or pre-treated with aspirin or clopidogrel. On the other hand, intraplantar administration of whole platelets or platelet releasate evoked hyperalgesia, which was inhibited by pre-incubation with alkaline phosphatase. Conclusions: Thrombocytopenia or inhibition of platelet function drastically reduced hyperalgesia induced by injection of carrageenan or Bjv; moreover, platelets per se secrete phosphorylated compounds involved in pain mediation. Thus, blood platelets are crucial cells involved in the pain genesis, and their role therein has been underestimated.