981 resultados para Chromium-Oxide Films
Resumo:
INTRODUCTION: Intrauterine growth restriction (IUGR) affects ∼8% of all pregnancies and is associated with major perinatal mortality and morbidity, and with an increased risk to develop cardiovascular diseases in adulthood. Despite identification of several risk factors, the mechanisms implicated in the development of IUGR remain poorly understood. In case of placental insufficiency, reduced delivery of oxygen and/or nutrients to the fetus could be associated with alterations in the umbilical circulation, contributing further to the impairment of maternal-fetal exchanges. We compared the structural and functional properties of umbilical cords from growth-restricted and appropriate for gestational age (AGA) term newborns, with particular attention to the umbilical vein (UV). METHODS: Human umbilical cords were collected at delivery. Morphological changes were investigated by histomorphometry, and UV's reactivity by pharmacological studies. RESULTS: Growth-restricted newborns displayed significantly lower growth parameters, placental weight and umbilical cord diameter than AGA controls. Total cross-section and smooth muscle areas were significantly smaller in UV of growth-restricted neonates than in controls. Maximal vasoconstriction achieved in isolated UV was lower in growth-restricted boys than in controls, whereas nitric oxide-induced relaxation was significantly reduced in UV of growth-restricted girls compared to controls. CONCLUSION: IUGR is associated with structural alterations of the UV in both genders, and with a decreased nitric oxide-induced relaxation in UV of newborn girls, whereas boys display impaired vasoconstriction. Further investigations will allow to better understand the regulation of umbilical circulation in growth-restricted neonates, which could contribute to devise potential novel therapeutic strategies to prevent or limit the development of IUGR.
Resumo:
Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity. Cell death is a key component in DOX-induced cardiotoxicity, but its mechanisms are elusive. Here, we explore the role of superoxide, nitric oxide (NO), and peroxynitrite in DOX-induced cell death using both in vivo and in vitro models of cardiotoxicity. Western blot analysis, real-time PCR, immunohistochemistry, flow cytometry, fluorescent microscopy, and biochemical assays were used to determine the markers of apoptosis/necrosis and sources of NO and superoxide and their production. Left ventricular function was measured by a pressure-volume system. We demonstrated increases in myocardial apoptosis (caspase-3 cleavage/activity, cytochrome c release, and TUNEL), inducible NO synthase (iNOS) expression, mitochondrial superoxide generation, 3-nitrotyrosine (NT) formation, matrix metalloproteinase (MMP)-2/MMP-9 gene expression, poly(ADP-ribose) polymerase activation [without major changes in NAD(P)H oxidase isoform 1, NAD(P)H oxidase isoform 2, p22(phox), p40(phox), p47(phox), p67(phox), xanthine oxidase, endothelial NOS, and neuronal NOS expression] and decreases in myocardial contractility, catalase, and glutathione peroxidase activities 5 days after DOX treatment to mice. All these effects of DOX were markedly attenuated by peroxynitrite scavengers. Doxorubicin dose dependently increased mitochondrial superoxide and NT generation and apoptosis/necrosis in cardiac-derived H9c2 cells. DOX- or peroxynitrite-induced apoptosis/necrosis positively correlated with intracellular NT formation and could be abolished by peroxynitrite scavengers. DOX-induced cell death and NT formation were also attenuated by selective iNOS inhibitors or in iNOS knockout mice. Various NO donors when coadministered with DOX but not alone dramatically enhanced DOX-induced cell death with concomitant increased NT formation. DOX-induced cell death was also attenuated by cell-permeable SOD but not by cell-permeable catalase, the xanthine oxidase inhibitor allopurinol, or the NADPH oxidase inhibitors apocynine or diphenylene iodonium. Thus, peroxynitrite is a major trigger of DOX-induced cell death both in vivo and in vivo, and the modulation of the pathways leading to its generation or its effective neutralization can be of significant therapeutic benefit.
Resumo:
We study the forced displacement of a thin film of fluid in contact with vertical and inclined substrates of different wetting properties, that range from hydrophilic to hydrophobic, using the lattice-Boltzmann method. We study the stability and pattern formation of the contact line in the hydrophilic and superhydrophobic regimes, which correspond to wedge-shaped and nose-shaped fronts, respectively. We find that contact lines are considerably more stable for hydrophilic substrates and small inclination angles. The qualitative behavior of the front in the linear regime remains independent of the wetting properties of the substrate as a single dispersion relation describes the stability of both wedges and noses. Nonlinear patterns show a clear dependence on wetting properties and substrate inclination angle. The effect is quantified in terms of the pattern growth rate, which vanishes for the sawtooth pattern and is finite for the finger pattern. Sawtooth shaped patterns are observed for hydrophilic substrates and low inclination angles, while finger-shaped patterns arise for hydrophobic substrates and large inclination angles. Finger dynamics show a transient in which neighboring fingers interact, followed by a steady state where each finger grows independently.
Resumo:
Selostus: Maan märkyyden vaikutus ilman koostumukseen ja dityppioksidiemissioon hiuemaassa
Resumo:
Epitaxial and fully strained SrRuO3 thin films have been grown on SrTiO3(100). At initial stages the growth mode is three-dimensional- (3D-)like, leading to a finger-shaped structure aligned with the substrate steps and that eventually evolves into a 2D step-flow growth. We study the impact that the defect structure associated with this unique growth mode transition has on the electronic properties of the films. Detailed analysis of the transport properties of nanometric films reveals that microstructural disorder promotes a shortening of the carrier mean free path. Remarkably enough, at low temperatures, this results in a reinforcement of quantum corrections to the conductivity as predicted by recent models of disordered, strongly correlated electronic systems. This finding may provide a simple explanation for the commonly observed¿in conducting oxides-resistivity minima at low temperature. Simultaneously, the ferromagnetic transition occurring at about 140 K, becomes broader as film thickness decreases down to nanometric range. The relevance of these results for the understanding of the electronic properties of disordered electronic systems and for the technological applications of SrRuO3¿and other ferromagnetic and metallic oxides¿is stressed.
Resumo:
Thin films of hydrogenated amorphous silicon (a‐Si:H), deposited by square wave modulated (SQWM) rf silane discharges, have been studied through spectroscopic and real time phase modulated ellipsometry. The SQMW films obtained at low mean rf power density (19 mW/cm2) have shown smaller surface roughness than those obtained in standard continuous wave (cw) rf discharges. At higher rf powers (≥56 mW/cm2), different behaviors depending on the modulating frequency have been observed. On the one hand, at low modulating frequencies (<40 Hz), the SQWM films have shown a significant increase of porosity and surface roughness as compared to cw samples. On the other, at higher modulating frequencies, the material density and roughness have been found to be similar in SQWM and cw films. Furthermore, the deposition rate of the films show more pronounced increases with the modulating frequency as the rf power is increased. Experimental results are discussed in terms of plasma negative charged species which can be relatively abundant in high rf power discharges and cause significant effects on the deposited layers through polymers, clusters, and powder formation.
Resumo:
We present a study about the influence of substrate temperature on deposition rate of hydrogenated amorphous silicon thin films prepared by rf glow discharge decomposition of pure silane gas in a capacitively coupled plasma reactor. Two different behaviors are observed depending on deposition pressure conditions. At high pressure (30 Pa) the influence of substrate temperature on deposition rate is mainly through a modification of gas density, in such a way that the substrate temperature of deposition rate is similar to pressure dependence at constant temperature. On the contrary, at low pressure (3 Pa), a gas density effect cannot account for the observed increase of deposition rate as substrate temperature rises above 450 K with an activation energy of 1.1 kcal/mole. In accordance with laser‐induced fluorescence measurements reported in the literature, this rise has been ascribed to an increase of secondary electron emission from the growing film surface as a result of molecular hydrogen desorption.
Resumo:
The optical absorption of hydrogenated amorphous carbon films (a‐C:H) was measured by spectroscopic ellipsometry. The a‐C:H films were deposited at different substrate temperatures by rf‐plasma of methane. A volume distribution of graphitic cluster size was assumed to reproduce the experimental spectra of the absorption coefficient. The changes in the absorption coefficient and the optical gap, induced by deposition temperature, have been interpreted in terms of changes in the graphitic cluster size of the network. The increase in the deposition temperature produces an increase in the size of the graphitic clusters.
Resumo:
We present a high‐resolution electron microscopy study of the microstructure of boron nitride thin films grown on silicon (100) by radio‐frequency plasma‐assisted chemical vapor deposition using B2H6 (1% in H2) and NH3 gases. Well‐adhered boron nitride films grown on the grounded electrode show a highly oriented hexagonal structure with the c‐axis parallel to the substrate surface throughout the film, without any interfacial amorphous layer. We ascribed this textured growth to an etching effect of atomic hydrogen present in the gas discharge. In contrast, films grown on the powered electrode, with compressive stress induced by ion bombardment, show a multilayered structure as observed by other authors, composed of an amorphous layer, a hexagonal layer with the c‐axis parallel to the substrate surface and another layer oriented at random
Resumo:
The scaling up of the Hot Wire Chemical Vapor Deposition (HW-CVD) technique to large deposition area can be done using a catalytic net of equal spaced parallel filaments. The large area deposition limit is defined as the limit whenever a further increment of the catalytic net area does not affect the properties of the deposited film. This is the case when a dense catalytic net is spread on a surface considerably larger than that of the film substrate. To study this limit, a system able to hold a net of twelve wires covering a surface of about 20 cm x 20 cm was used to deposit amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon over a substrate of 10 cm x 10 cm placed at a filament-substrate distance ranging from 1 to 2 cm. The uniformity of the film thickness d and optical constants, n(x, λ) and α(x,¯hω), was studied via transmission measurements. The thin film uniformity as a function of the filament-substrate distance was studied. The experimental thickness profile was compared with the theoretical result obtained solving the diffusion equations. The optimization of the filament-substrate distance allowed obtaining films with inhomogeneities lower than ±2.5% and deposition rates higher than 1 nm/s and 4.5 nm/s for (μc-Si:H) and (a-Si:H), respectively.
Resumo:
Hydrogenated amorphous and nanocrystalline silicon, deposited by catalytic chemical vapour deposition, have been doped during deposition by the addition of diborane and phosphine in the feed gas, with concentrations in the region of 1%. The crystalline fraction, dopant concentration and electrical properties of the films are studied. The nanocrystalline films exhibited a high doping efficiency, both for n and p doping, and electrical characteristics similar to those of plasma-deposited films. The doping efficiency of n-type amorphous silicon is similar to that obtained for plasma-deposited electronic-grade amorphous silicon, whereas p-type layers show a doping efficiency of one order of magnitude lower. A higher deposition temperature of 450°C was required to achieve p-type films with electrical characteristics similar to those of plasma-deposited films.
Resumo:
In this paper, we have presented results on silicon thin films deposited by hot-wire CVD at low substrate temperatures (200 °C). Films ranging from amorphous to nanocrystalline were obtained by varying the filament temperature from 1500 to 1800 °C. A crystalline fraction of 50% was obtained for the sample deposited at 1700 °C. The results obtained seemed to indicate that atomic hydrogen plays a leading role in the obtaining of nanocrystalline silicon. The optoelectronic properties of the amorphous material obtained in these conditions are slightly poorer than the ones observed in device-grade films grown by plasma-enhanced CVD due to a higher hydrogen incorporation (13%).