987 resultados para Chemical equilibrium.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis consists of three essays in the areas of political economy and game theory, unified by their focus on the effects of pre-play communication on equilibrium outcomes.

Communication is fundamental to elections. Chapter 2 extends canonical voter turnout models, where citizens, divided into two competing parties, choose between costly voting and abstaining, to include any form of communication, and characterizes the resulting set of Aumann's correlated equilibria. In contrast to previous research, high-turnout equilibria exist in large electorates and uncertain environments. This difference arises because communication can coordinate behavior in such a way that citizens find it incentive compatible to follow their correlated signals to vote more. The equilibria have expected turnout of at least twice the size of the minority for a wide range of positive voting costs.

In Chapter 3 I introduce a new equilibrium concept, called subcorrelated equilibrium, which fills the gap between Nash and correlated equilibrium, extending the latter to multiple mediators. Subcommunication equilibrium similarly extends communication equilibrium for incomplete information games. I explore the properties of these solutions and establish an equivalence between a subset of subcommunication equilibria and Myerson's quasi-principals' equilibria. I characterize an upper bound on expected turnout supported by subcorrelated equilibrium in the turnout game.

Chapter 4, co-authored with Thomas Palfrey, reports a new study of the effect of communication on voter turnout using a laboratory experiment. Before voting occurs, subjects may engage in various kinds of pre-play communication through computers. We study three communication treatments: No Communication, a control; Public Communication, where voters exchange public messages with all other voters, and Party Communication, where messages are exchanged only within one's own party. Our results point to a strong interaction effect between the form of communication and the voting cost. With a low voting cost, party communication increases turnout, while public communication decreases turnout. The data are consistent with correlated equilibrium play. With a high voting cost, public communication increases turnout. With communication, we find essentially no support for the standard Nash equilibrium turnout predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trace volatile organic compounds emitted by biogenic and anthropogenic sources into the atmosphere can undergo extensive photooxidation to form species with lower volatility. By equilibrium partitioning or reactive uptake, these compounds can nucleate into new aerosol particles or deposit onto already-existing particles to form secondary organic aerosol (SOA). SOA and other atmospheric particulate matter have measurable effects on global climate and public health, making understanding SOA formation a needed field of scientific inquiry. SOA formation can be done in a laboratory setting, using an environmental chamber; under these controlled conditions it is possible to generate SOA from a single parent compound and study the chemical composition of the gas and particle phases. By studying the SOA composition, it is possible to gain understanding of the chemical reactions that occur in the gas phase and particle phase, and identify potential heterogeneous processes that occur at the surface of SOA particles. In this thesis, mass spectrometric methods are used to identify qualitatively and qualitatively the chemical components of SOA derived from the photooxidation of important anthropogenic volatile organic compounds that are associated with gasoline and diesel fuels and industrial activity (C12 alkanes, toluene, and o-, m-, and p-cresols). The conditions under which SOA was generated in each system were varied to explore the effect of NOx and inorganic seed composition on SOA chemical composition. The structure of the parent alkane was varied to investigate the effect on the functionalization and fragmentation of the resulting oxidation products. Relative humidity was varied in the alkane system as well to measure the effect of increased particle-phase water on condensed-phase reactions. In all systems, oligomeric species, resulting potentially from particle-phase and heterogeneous processes, were identified. Imines produced by reactions between (NH4)2SO4 seed and carbonyl compounds were identified in all systems. Multigenerational photochemistry producing low- and extremely low-volatility organic compounds (LVOC and ELVOC) was reflected strongly in the particle-phase composition as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes applications of cavity enhanced spectroscopy towards applications of remote sensing, chemical kinetics and detection of transient radical molecular species. Both direct absorption spectroscopy and cavity ring-down spectroscopy are used in this work. Frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) was utilized for measurements of spectral lineshapes of O2 and CO2 for obtaining laboratory reference data in support of NASA’s OCO-2 mission. FS-CRDS is highly sensitive (> 10 km absorption path length) and precise (> 10000:1 SNR), making it ideal to study subtle non-Voigt lineshape effects. In addition, these advantages of FS-CRDS were further extended for measuring kinetic isotope effects: A dual-wavelength variation of FS-CRDS was used for measuring precise D/H and 13C/12C methane isotope ratios (sigma>0.026%) for the purpose of measuring the temperature dependent kinetic isotope effects of methane oxidation with O(1D) and OH radicals. Finally, direct absorption spectroscopic detection of the trans-DOCO radical via a frequency combs spectrometer was conducted in collaboration with professor Jun Ye at JILA/University of Colorado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals.

The first part of the thesis presents the discovery and development of Zn-IV nitride materials.The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1−xN2 series as a replacement for III-nitrides is discussed here.

The second half of the thesis shows ab−initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown.

Finally, this thesis gives an outlook on the potential of non-equilibrium phenomena in metals and semiconductors for future light-based technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation was made of forced convection film boiling of subcooled water around a sphere at atmospheric pressure. The water was sufficiently cool that the vapor condensed before leaving the film with the result that no vapor bubbles left the film. The experimental runs were made using inductively heated spheres at temperatures above 740°C. and using inlet water temperatures between 15°C. and 27°C. The spheres used had diameters of 1/2 inch, 9/16 inch, and 3/8 inch and were supported by the liquid flow. Reynolds numbers between 60 and 700 were used.

Analysis of the collected non-condensables indicated that oxygen and nitrogen dissolved in the water accumulated within the vapor film and that hetrogeneous chemical reactions occurred at the sphere surface. An iron-steam reaction resulted in more than 20% by volume hydrogen in the film at wall temperatures above 900°C. At temperatures near 1100°C. more than 80% by volume of the film was composed of hydrogen. It was found that gold plating of the sphere could eliminate this reaction.

Material and energy balances were used to derive equations which may be used to predict the overall average heat transfer coefficients for subcooled film boiling around a sphere. These equations include the effect of dissolved gases in the water. Equations also were derived which may be used to predict the composition of the film for cases in which an equilibrium exists between the dissolved gases and the gases in the film.

The derived equations were compared to the experimental results. It was found that a correlation existed between the Nusselt number for heat transfer from the vapor-liquid interface into the liquid and the Reynolds number, liquid Prandtl number product. In addition, it was found that the percentage of dissolved oxygen removed during the film boiling could be predicted to within 10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic resonance techniques have given us a powerful means for investigating dynamical processes in gases, liquids and solids. Dynamical effects manifest themselves in both resonance line shifts and linewidths, and, accordingly, require detailed analyses to extract desired information. The success of a magnetic resonance experiment depends critically on relaxation mechanisms to maintain thermal equilibrium between spin states. Consequently, there must be an interaction between the excited spin states and their immediate molecular environment which promote changes in spin orientation while excess magnetic energy is coupled into other degrees of freedom by non-radiative processes. This is well known as spin-lattice relaxation. Certain dynamical processes cause fluctuations in the spin state energy levels leading to spin-spin relaxation and, here again, the environment at the molecular level plays a significant role in the magnitude of interaction. Relatively few electron spin relaxation studies of solutions have been conducted and the present work is addressed toward the extension of our knowledge in this area and the retrieval of dynamical information from line shape analyses on a time scale comparable to diffusion controlled phenomena.

Specifically, the electron spin relaxation of three Mn+23d5 complexes, Mn(CH3CN)6+2, MnCl4-2 in acetonitrile has been studied in considerable detail. The effective spin Hamiltonian constants were carefully evaluated under a wide range of experimental conditions. Resonance widths of these Mn+2 complexes were studied in the presence of various excess ligand ions and as a function of concentration, viscosity, temperature and frequency (X-band, ~9.5 Ԍ Hz and K-band, ~35 Ԍ Hz).

A number of interesting conclusions were drawn from these studies. For the Et4NCl-4-2 system several relaxation mechanisms leading to resonance broadening were observed. One source appears to arise through spin-orbit interactions caused by modulation of the ligand field resulting from transient distortions of the complex imparted by solvent fluctuations in the immediate surroundings of the paramagnetic ion. An additional spin relaxation was assigned to the formation of ion pairs [Et4N+…MnCl4-2] and it was possible to estimate the dissociation constant for this specie in acetonitrile.

The Bu4NBr-MnBr4-2 study was considerably more interesting. As in the former case, solvent fluctuations and ion-pairing of the paramagnetic complex [Bu4N+…MnBr4-2] provide significant relaxation for the electronic spin system. Most interesting, without doubt, is the onset of a new relaxation mechanism leading to resonance broadening which is best interpreted as chemical exchange. Thus, assuming that resonance widths were simply governed by electron spin state lifetimes, we were able to extract dynamical information from an interaction in which the initial and final states are the same

MnBr4-2 + Br- = MnBr4-2 + Br-.

The bimolecular rate constants were obtained at six different temperatures and their magnitudes suggested that the exchange is probably diffusion controlled with essentially a zero energy of activation. The most important source of spin relaxation in this system stems directly from dipolar interactions between the manganese 3d5 electrons. Moreover, the dipolar broadening is strongly frequency dependent indicating a deviation between the transverse and longitudinal relaxation times. We are led to the conclusion that the 3d5 spin states of ion-paired MnBr4-2 are significantly correlated so that dynamical processes are also entering the picture. It was possible to estimate the correlation time, Td, characterizing this dynamical process.

In Part II we study nuclear magnetic relaxation of bromine ions in the MnBr4-2-Bu4NBr-acetonitrile system. Essentially we monitor the 79Br and 81Br linewidths in response to the [MnBr4-2]/[Br-] ratio with the express purpose of supporting our contention that exchange is occurring between "free" bromine ions in the solvent and bromine in the first coordination sphere of the paramagnetic anion. The complexity of the system elicited a two-part study: (1) the linewidth behavior of Bu4NBr in anhydrous CH3CN in the absence of MnBr4-2 and (2) in the presence of MnBr4-2. It was concluded in study (1) that dynamical association, Bu4NBr k1= Bu4N+ + Br-, was modulating field-gradient interactions at frequencies high enough to provide an estimation of the unimolecular rate constant, k1. A comparison of the two isotopic bromine linewidth-mole fraction results led to the conclusion that quadrupole interactions provided the dominant relaxation mechanism. In study (2) the "residual" bromine linewidths for both 79Br and 81Br are clearly controlled by quadrupole interactions which appear to be modulated by very rapid dynamical processes other than molecular reorientation. We conclude that the "residual" linewidth has its origin in chemical exchange and that bromine nuclei exchange rapidly between a "free" solvated ion and the paramagnetic complex, MnBr4-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This abbreviated translation summarises the chemical composition of Iraq water resources. Among the described water bodies are the River Euphrates, Shatt al Arab River and a number of standing waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conformational equilibrium in medium-sized rings has been investigated by the temperature variation of the fluorine-19 n.m.r. spectra of 1, 1-difluorocycloalkanes and various substituted derivatives of them. Inversion has been found to be fast on the n.m.r. time scale at -180˚ for 1, 1-difluorocycloheptane, but slow for 1, 1-difluoro-4, 4-dimethylcycloheptane at -150˚. At low temperature, the latter compound affords a single AB pattern with a chemical-shift difference of 841 cps. which has been interpreted in terms of the twist-chair conformation with the methyl groups on the axis position and the fluorine atoms in the 4-position. At room temperature, the n.m.r. spectrum of 1, 1-difluoro-4-t-butylcycloheptane affords an AB pattern with a chemical-shift difference of 185 cps. The presence of distinct trans and gauche couplings from the adjacent hydrogens has been interpreted to suggest the existence of a single predominant form, the twist chair with the fluorine atoms on the axis position.

Investigation of 1, 1-difluorocycloöctane and 1, 1, 4, 4-tetrafluorocycloöctane has led to the detection of two kinetic processes both having activation energies of 8-10 kcal./mole but quite different A values. In light of these results eleven different conformations of cycloöctane along with a detailed description of the ways in which they may be interconverted are discussed. An interpretation involving the twist-boat conformation rapidly equilibrating through the saddle and the parallel-boat forms at room temperature is compatible with the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A progress report on research undertaken on the chemical budget of a lake, outlining the importance of nitrogen and phosphorus in governing the production of life in freshwater. The report uses the Rivers Brathay and Leven, which flow into Windermere, as examples. The report also refers to the Rivers Rothay, Troutbeck and Cunsey. A table is including which shows the monthly average nitrate content (mg per litre) of the River Brathey and River Leven for 1937 into 1938. The report also includes a figure showing Windermere lake levels, discharge and rainfall during 1937. It also briefly considers possible anthropogenic influences on water quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An article reviewing the work undertaken looking at the seasonal variation of chemical conditions in water at various depths in lakes. The laboratory tests undertaken for the research is outlined, as well as details of the sampling locations and the staff involved with the work. One figure shows the seasonal variation in the amounts of dissolved substances in the surface water of Windermere during 1936. Another figure shows seasonal varation inthe dry weight of phyto- and zooplankton in Windermere. Seasonal changes are discussed further and a table is included showing chemical conditions in winter and summer for Windermere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The area studied was the River Frome system below Dorchester. The main river has its origins mainly in chalk springs, although some of its tributaries have surface run-off from farm lands and heath-lands. Thus the chemistry of the river is affected by changes in land practice and differences in the geology of the catchment area. Regular chemical analysis of chalk waters started at the River Laboratory in 1964, Regular weekly analyses have been carried out since 1965 at Bere Stream (a small chalk stream) and the River Frome (a large chalk stream); also single samples have been analysed to provide preliminary information. In 1970-71 an attempt was made to discover the contribution each main source made to the flow and chemical composition of the River Frome. Results of these investigations are presented in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different categories of flow problems of a fluid containing small particles are being considered here. They are: (i) a fluid containing small, non-reacting particles (Parts I and II); (ii) a fluid containing reacting particles (Parts III and IV); and (iii) a fluid containing particles of two distinct sizes with collisions between two groups of particles (Part V).

Part I

A numerical solution is obtained for a fluid containing small particles flowing over an infinite disc rotating at a constant angular velocity. It is a boundary layer type flow, and the boundary layer thickness for the mixture is estimated. For large Reynolds number, the solution suggests the boundary layer approximation of a fluid-particle mixture by assuming W = Wp. The error introduced is consistent with the Prandtl’s boundary layer approximation. Outside the boundary layer, the flow field has to satisfy the “inviscid equation” in which the viscous stress terms are absent while the drag force between the particle cloud and the fluid is still important. Increase of particle concentration reduces the boundary layer thickness and the amount of mixture being transported outwardly is reduced. A new parameter, β = 1/Ω τv, is introduced which is also proportional to μ. The secondary flow of the particle cloud depends very much on β. For small values of β, the particle cloud velocity attains its maximum value on the surface of the disc, and for infinitely large values of β, both the radial and axial particle velocity components vanish on the surface of the disc.

Part II

The “inviscid” equation for a gas-particle mixture is linearized to describe the flow over a wavy wall. Corresponding to the Prandtl-Glauert equation for pure gas, a fourth order partial differential equation in terms of the velocity potential ϕ is obtained for the mixture. The solution is obtained for the flow over a periodic wavy wall. For equilibrium flows where λv and λT approach zero and frozen flows in which λv and λT become infinitely large, the flow problem is basically similar to that obtained by Ackeret for a pure gas. For finite values of λv and λT, all quantities except v are not in phase with the wavy wall. Thus the drag coefficient CD is present even in the subsonic case, and similarly, all quantities decay exponentially for supersonic flows. The phase shift and the attenuation factor increase for increasing particle concentration.

Part III

Using the boundary layer approximation, the initial development of the combustion zone between the laminar mixing of two parallel streams of oxidizing agent and small, solid, combustible particles suspended in an inert gas is investigated. For the special case when the two streams are moving at the same speed, a Green’s function exists for the differential equations describing first order gas temperature and oxidizer concentration. Solutions in terms of error functions and exponential integrals are obtained. Reactions occur within a relatively thin region of the order of λD. Thus, it seems advantageous in the general study of two-dimensional laminar flame problems to introduce a chemical boundary layer of thickness λD within which reactions take place. Outside this chemical boundary layer, the flow field corresponds to the ordinary fluid dynamics without chemical reaction.

Part IV

The shock wave structure in a condensing medium of small liquid droplets suspended in a homogeneous gas-vapor mixture consists of the conventional compressive wave followed by a relaxation region in which the particle cloud and gas mixture attain momentum and thermal equilibrium. Immediately following the compressive wave, the partial pressure corresponding to the vapor concentration in the gas mixture is higher than the vapor pressure of the liquid droplets and condensation sets in. Farther downstream of the shock, evaporation appears when the particle temperature is raised by the hot surrounding gas mixture. The thickness of the condensation region depends very much on the latent heat. For relatively high latent heat, the condensation zone is small compared with ɅD.

For solid particles suspended initially in an inert gas, the relaxation zone immediately following the compression wave consists of a region where the particle temperature is first being raised to its melting point. When the particles are totally melted as the particle temperature is further increased, evaporation of the particles also plays a role.

The equilibrium condition downstream of the shock can be calculated and is independent of the model of the particle-gas mixture interaction.

Part V

For a gas containing particles of two distinct sizes and satisfying certain conditions, momentum transfer due to collisions between the two groups of particles can be taken into consideration using the classical elastic spherical ball model. Both in the relatively simple problem of normal shock wave and the perturbation solutions for the nozzle flow, the transfer of momentum due to collisions which decreases the velocity difference between the two groups of particles is clearly demonstrated. The difference in temperature as compared with the collisionless case is quite negligible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical speciation of both metals and non-metals, the use of polarographic techniques, and application to the study of the chemistry of anoxic waters are considered. In the first part of the paper unfamiliar terminology is explained and then an example of simple lake chemistry is presented to illustrate why the concept of speciation is necessary.