973 resultados para Chaîne de Markov Monte Carlo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modelação e análise de séries temporais de valores inteiros têm sido alvo de grande investigação e desenvolvimento nos últimos anos, com aplicações várias em diversas áreas da ciência. Nesta tese a atenção centrar-se-á no estudo na classe de modelos basedos no operador thinning binomial. Tendo como base o operador thinning binomial, esta tese focou-se na construção e estudo de modelos SETINAR(2; p(1); p(2)) e PSETINAR(2; 1; 1)T , modelos autorregressivos de valores inteiros com limiares autoinduzidos e dois regimes, admitindo que as inovações formam uma sucessão de variáveis independentes com distribuição de Poisson. Relativamente ao primeiro modelo analisado, o modelo SETINAR(2; p(1); p(2)), além do estudo das suas propriedades probabilísticas e de métodos, clássicos e bayesianos, para estimar os parâmetros, analisou-se a questão da seleção das ordens, no caso de elas serem desconhecidas. Com este objetivo consideraram-se algoritmos de Monte Carlo via cadeias de Markov, em particular o algoritmo Reversible Jump, abordando-se também o problema da seleção de modelos, usando metodologias clássica e bayesiana. Complementou-se a análise através de um estudo de simulação e uma aplicação a dois conjuntos de dados reais. O modelo PSETINAR(2; 1; 1)T proposto, é também um modelo autorregressivo com limiares autoinduzidos e dois regimes, de ordem unitária em cada um deles, mas apresentando uma estrutura periódica. Estudaram-se as suas propriedades probabilísticas, analisaram-se os problemas de inferência e predição de futuras observações e realizaram-se estudos de simulação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Lipid-lowering therapy is costly but effective at reducing coronary heart disease (CHD) risk. OBJECTIVE: To assess the cost-effectiveness and public health impact of Adult Treatment Panel III (ATP III) guidelines and compare with a range of risk- and age-based alternative strategies. DESIGN: The CHD Policy Model, a Markov-type cost-effectiveness model. DATA SOURCES: National surveys (1999 to 2004), vital statistics (2000), the Framingham Heart Study (1948 to 2000), other published data, and a direct survey of statin costs (2008). TARGET POPULATION: U.S. population age 35 to 85 years. Time Horizon: 2010 to 2040. PERSPECTIVE: Health care system. INTERVENTION: Lowering of low-density lipoprotein cholesterol with HMG-CoA reductase inhibitors (statins). OUTCOME MEASURE: Incremental cost-effectiveness. RESULTS OF BASE-CASE ANALYSIS: Full adherence to ATP III primary prevention guidelines would require starting (9.7 million) or intensifying (1.4 million) statin therapy for 11.1 million adults and would prevent 20,000 myocardial infarctions and 10,000 CHD deaths per year at an annual net cost of $3.6 billion ($42,000/QALY) if low-intensity statins cost $2.11 per pill. The ATP III guidelines would be preferred over alternative strategies if society is willing to pay $50,000/QALY and statins cost $1.54 to $2.21 per pill. At higher statin costs, ATP III is not cost-effective; at lower costs, more liberal statin-prescribing strategies would be preferred; and at costs less than $0.10 per pill, treating all persons with low-density lipoprotein cholesterol levels greater than 3.4 mmol/L (>130 mg/dL) would yield net cost savings. RESULTS OF SENSITIVITY ANALYSIS: Results are sensitive to the assumptions that LDL cholesterol becomes less important as a risk factor with increasing age and that little disutility results from taking a pill every day. LIMITATION: Randomized trial evidence for statin effectiveness is not available for all subgroups. CONCLUSION: The ATP III guidelines are relatively cost-effective and would have a large public health impact if implemented fully in the United States. Alternate strategies may be preferred, however, depending on the cost of statins and how much society is willing to pay for better health outcomes. FUNDING: Flight Attendants' Medical Research Institute and the Swanson Family Fund. The Framingham Heart Study and Framingham Offspring Study are conducted and supported by the National Heart, Lung, and Blood Institute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affiliation: Claudia Kleinman, Nicolas Rodrigue & Hervé Philippe : Département de biochimie, Faculté dedecine, Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The attached file is created with Scientific Workplace Latex

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contexte : Les stratégies pharmacologiques pour traiter la schizophrénie reçoivent une attention croissante due au développement de nouvelles pharmacothérapies plus efficaces, mieux tolérées mais plus coûteuses. La schizophrénie est une maladie chronique présentant différents états spécifiques et définis par leur sévérité. Objectifs : Ce programme de recherche vise à: 1) Évaluer les facteurs associés au risque d'être dans un état spécifique de la schizophrénie, afin de construire les fonctions de risque de la modélisation du cours naturel de la schizophrénie; 2) Développer et valider un modèle de Markov avec microsimulations de Monte-Carlo, afin de simuler l'évolution naturelle des patients qui sont nouvellement diagnostiqués pour la schizophrénie, en fonction du profil individuel des facteurs de risque; 3) Estimer le coût direct de la schizophrénie (pour les soins de santé et autres non reliés aux soins de santé) dans la perspective gouvernementale et simuler l’impact clinique et économique du développement d’un traitement dans une cohorte de patients nouvellement diagnostiqués avec la schizophrénie, suivis pendant les cinq premières années post-diagnostic. Méthode : Pour le premier objectif de ce programme de recherche, un total de 14 320 patients nouvellement diagnostiqués avec la schizophrénie ont été identifiés dans les bases de données de la RAMQ et de Med-Echo. Les six états spécifiques de la schizophrénie ont été définis : le premier épisode (FE), l'état de dépendance faible (LDS), l’état de dépendance élevée (HDS), l’état stable (Stable), l’état de bien-être (Well) et l'état de décès (Death). Pour évaluer les facteurs associés au risque de se trouver dans chacun des états spécifiques de la schizophrénie, nous avons construit 4 fonctions de risque en se basant sur l'analyse de risque proportionnel de Cox pour des risques compétitifs. Pour le deuxième objectif, nous avons élaboré et validé un modèle de Markov avec microsimulations de Monte-Carlo intégrant les six états spécifiques de la schizophrénie. Dans le modèle, chaque sujet avait ses propres probabilités de transition entre les états spécifiques de la schizophrénie. Ces probabilités ont été estimées en utilisant la méthode de la fonction d'incidence cumulée. Pour le troisième objectif, nous avons utilisé le modèle de Markov développé précédemment. Ce modèle inclut les coûts directs de soins de santé, estimés en utilisant les bases de données de la Régie de l'assurance maladie du Québec et Med-Echo, et les coûts directs autres que pour les soins de santé, estimés à partir des enquêtes et publications de Statistique Canada. Résultats : Un total de 14 320 personnes nouvellement diagnostiquées avec la schizophrénie ont été identifiées dans la cohorte à l'étude. Le suivi moyen des sujets était de 4,4 (± 2,6) ans. Parmi les facteurs associés à l’évolution de la schizophrénie, on peut énumérer l’âge, le sexe, le traitement pour la schizophrénie et les comorbidités. Après une période de cinq ans, nos résultats montrent que 41% des patients seront considérés guéris, 13% seront dans un état stable et 3,4% seront décédés. Au cours des 5 premières années après le diagnostic de schizophrénie, le coût direct moyen de soins de santé et autres que les soins de santé a été estimé à 36 701 $ canadiens (CAN) (95% CI: 36 264-37 138). Le coût des soins de santé a représenté 56,2% du coût direct, le coût de l'aide sociale 34,6% et le coût associé à l’institutionnalisation dans les établissements de soins de longue durée 9,2%. Si un nouveau traitement était disponible et offrait une augmentation de 20% de l'efficacité thérapeutique, le coût direct des soins de santé et autres que les soins de santé pourrait être réduit jusqu’à 14,2%. Conclusion : Nous avons identifié des facteurs associés à l’évolution de la schizophrénie. Le modèle de Markov que nous avons développé est le premier modèle canadien intégrant des probabilités de transition ajustées pour le profil individuel des facteurs de risque, en utilisant des données réelles. Le modèle montre une bonne validité interne et externe. Nos résultats indiquent qu’un nouveau traitement pourrait éventuellement réduire les hospitalisations et le coût associé aux établissements de soins de longue durée, augmenter les chances des patients de retourner sur le marché du travail et ainsi contribuer à la réduction du coût de l'aide sociale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La méthode que nous présentons pour modéliser des données dites de "comptage" ou données de Poisson est basée sur la procédure nommée Modélisation multi-niveau et interactive de la régression de Poisson (PRIMM) développée par Christiansen et Morris (1997). Dans la méthode PRIMM, la régression de Poisson ne comprend que des effets fixes tandis que notre modèle intègre en plus des effets aléatoires. De même que Christiansen et Morris (1997), le modèle étudié consiste à faire de l'inférence basée sur des approximations analytiques des distributions a posteriori des paramètres, évitant ainsi d'utiliser des méthodes computationnelles comme les méthodes de Monte Carlo par chaînes de Markov (MCMC). Les approximations sont basées sur la méthode de Laplace et la théorie asymptotique liée à l'approximation normale pour les lois a posteriori. L'estimation des paramètres de la régression de Poisson est faite par la maximisation de leur densité a posteriori via l'algorithme de Newton-Raphson. Cette étude détermine également les deux premiers moments a posteriori des paramètres de la loi de Poisson dont la distribution a posteriori de chacun d'eux est approximativement une loi gamma. Des applications sur deux exemples de données ont permis de vérifier que ce modèle peut être considéré dans une certaine mesure comme une généralisation de la méthode PRIMM. En effet, le modèle s'applique aussi bien aux données de Poisson non stratifiées qu'aux données stratifiées; et dans ce dernier cas, il comporte non seulement des effets fixes mais aussi des effets aléatoires liés aux strates. Enfin, le modèle est appliqué aux données relatives à plusieurs types d'effets indésirables observés chez les participants d'un essai clinique impliquant un vaccin quadrivalent contre la rougeole, les oreillons, la rub\'eole et la varicelle. La régression de Poisson comprend l'effet fixe correspondant à la variable traitement/contrôle, ainsi que des effets aléatoires liés aux systèmes biologiques du corps humain auxquels sont attribués les effets indésirables considérés.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans ce mémoire, nous cherchons à modéliser des tables à deux entrées monotones en lignes et/ou en colonnes, pour une éventuelle application sur les tables de mortalité. Nous adoptons une approche bayésienne non paramétrique et représentons la forme fonctionnelle des données par splines bidimensionnelles. L’objectif consiste à condenser une table de mortalité, c’est-à-dire de réduire l’espace d’entreposage de la table en minimisant la perte d’information. De même, nous désirons étudier le temps nécessaire pour reconstituer la table. L’approximation doit conserver les mêmes propriétés que la table de référence, en particulier la monotonie des données. Nous travaillons avec une base de fonctions splines monotones afin d’imposer plus facilement la monotonie au modèle. En effet, la structure flexible des splines et leurs dérivées faciles à manipuler favorisent l’imposition de contraintes sur le modèle désiré. Après un rappel sur la modélisation unidimensionnelle de fonctions monotones, nous généralisons l’approche au cas bidimensionnel. Nous décrivons l’intégration des contraintes de monotonie dans le modèle a priori sous l’approche hiérarchique bayésienne. Ensuite, nous indiquons comment obtenir un estimateur a posteriori à l’aide des méthodes de Monte Carlo par chaînes de Markov. Finalement, nous étudions le comportement de notre estimateur en modélisant une table de la loi normale ainsi qu’une table t de distribution de Student. L’estimation de nos données d’intérêt, soit la table de mortalité, s’ensuit afin d’évaluer l’amélioration de leur accessibilité.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse présente des méthodes de traitement de données de comptage en particulier et des données discrètes en général. Il s'inscrit dans le cadre d'un projet stratégique du CRNSG, nommé CC-Bio, dont l'objectif est d'évaluer l'impact des changements climatiques sur la répartition des espèces animales et végétales. Après une brève introduction aux notions de biogéographie et aux modèles linéaires mixtes généralisés aux chapitres 1 et 2 respectivement, ma thèse s'articulera autour de trois idées majeures. Premièrement, nous introduisons au chapitre 3 une nouvelle forme de distribution dont les composantes ont pour distributions marginales des lois de Poisson ou des lois de Skellam. Cette nouvelle spécification permet d'incorporer de l'information pertinente sur la nature des corrélations entre toutes les composantes. De plus, nous présentons certaines propriétés de ladite distribution. Contrairement à la distribution multidimensionnelle de Poisson qu'elle généralise, celle-ci permet de traiter les variables avec des corrélations positives et/ou négatives. Une simulation permet d'illustrer les méthodes d'estimation dans le cas bidimensionnel. Les résultats obtenus par les méthodes bayésiennes par les chaînes de Markov par Monte Carlo (CMMC) indiquent un biais relatif assez faible de moins de 5% pour les coefficients de régression des moyennes contrairement à ceux du terme de covariance qui semblent un peu plus volatils. Deuxièmement, le chapitre 4 présente une extension de la régression multidimensionnelle de Poisson avec des effets aléatoires ayant une densité gamma. En effet, conscients du fait que les données d'abondance des espèces présentent une forte dispersion, ce qui rendrait fallacieux les estimateurs et écarts types obtenus, nous privilégions une approche basée sur l'intégration par Monte Carlo grâce à l'échantillonnage préférentiel. L'approche demeure la même qu'au chapitre précédent, c'est-à-dire que l'idée est de simuler des variables latentes indépendantes et de se retrouver dans le cadre d'un modèle linéaire mixte généralisé (GLMM) conventionnel avec des effets aléatoires de densité gamma. Même si l'hypothèse d'une connaissance a priori des paramètres de dispersion semble trop forte, une analyse de sensibilité basée sur la qualité de l'ajustement permet de démontrer la robustesse de notre méthode. Troisièmement, dans le dernier chapitre, nous nous intéressons à la définition et à la construction d'une mesure de concordance donc de corrélation pour les données augmentées en zéro par la modélisation de copules gaussiennes. Contrairement au tau de Kendall dont les valeurs se situent dans un intervalle dont les bornes varient selon la fréquence d'observations d'égalité entre les paires, cette mesure a pour avantage de prendre ses valeurs sur (-1;1). Initialement introduite pour modéliser les corrélations entre des variables continues, son extension au cas discret implique certaines restrictions. En effet, la nouvelle mesure pourrait être interprétée comme la corrélation entre les variables aléatoires continues dont la discrétisation constitue nos observations discrètes non négatives. Deux méthodes d'estimation des modèles augmentés en zéro seront présentées dans les contextes fréquentiste et bayésien basées respectivement sur le maximum de vraisemblance et l'intégration de Gauss-Hermite. Enfin, une étude de simulation permet de montrer la robustesse et les limites de notre approche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le modèle GARCH à changement de régimes est le fondement de cette thèse. Ce modèle offre de riches dynamiques pour modéliser les données financières en combinant une structure GARCH avec des paramètres qui varient dans le temps. Cette flexibilité donne malheureusement lieu à un problème de path dependence, qui a empêché l'estimation du modèle par le maximum de vraisemblance depuis son introduction, il y a déjà près de 20 ans. La première moitié de cette thèse procure une solution à ce problème en développant deux méthodologies permettant de calculer l'estimateur du maximum de vraisemblance du modèle GARCH à changement de régimes. La première technique d'estimation proposée est basée sur l'algorithme Monte Carlo EM et sur l'échantillonnage préférentiel, tandis que la deuxième consiste en la généralisation des approximations du modèle introduites dans les deux dernières décennies, connues sous le nom de collapsing procedures. Cette généralisation permet d'établir un lien méthodologique entre ces approximations et le filtre particulaire. La découverte de cette relation est importante, car elle permet de justifier la validité de l'approche dite par collapsing pour estimer le modèle GARCH à changement de régimes. La deuxième moitié de cette thèse tire sa motivation de la crise financière de la fin des années 2000 pendant laquelle une mauvaise évaluation des risques au sein de plusieurs compagnies financières a entraîné de nombreux échecs institutionnels. À l'aide d'un large éventail de 78 modèles économétriques, dont plusieurs généralisations du modèle GARCH à changement de régimes, il est démontré que le risque de modèle joue un rôle très important dans l'évaluation et la gestion du risque d'investissement à long terme dans le cadre des fonds distincts. Bien que la littérature financière a dévoué beaucoup de recherche pour faire progresser les modèles économétriques dans le but d'améliorer la tarification et la couverture des produits financiers, les approches permettant de mesurer l'efficacité d'une stratégie de couverture dynamique ont peu évolué. Cette thèse offre une contribution méthodologique dans ce domaine en proposant un cadre statistique, basé sur la régression, permettant de mieux mesurer cette efficacité.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les méthodes de Monte Carlo par chaînes de Markov (MCCM) sont des méthodes servant à échantillonner à partir de distributions de probabilité. Ces techniques se basent sur le parcours de chaînes de Markov ayant pour lois stationnaires les distributions à échantillonner. Étant donné leur facilité d’application, elles constituent une des approches les plus utilisées dans la communauté statistique, et tout particulièrement en analyse bayésienne. Ce sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Depuis l’apparition de la première méthode MCCM en 1953 (la méthode de Metropolis, voir [10]), l’intérêt pour ces méthodes, ainsi que l’éventail d’algorithmes disponibles ne cessent de s’accroître d’une année à l’autre. Bien que l’algorithme Metropolis-Hastings (voir [8]) puisse être considéré comme l’un des algorithmes de Monte Carlo par chaînes de Markov les plus généraux, il est aussi l’un des plus simples à comprendre et à expliquer, ce qui en fait un algorithme idéal pour débuter. Il a été sujet de développement par plusieurs chercheurs. L’algorithme Metropolis à essais multiples (MTM), introduit dans la littérature statistique par [9], est considéré comme un développement intéressant dans ce domaine, mais malheureusement son implémentation est très coûteuse (en termes de temps). Récemment, un nouvel algorithme a été développé par [1]. Il s’agit de l’algorithme Metropolis à essais multiples revisité (MTM revisité), qui définit la méthode MTM standard mentionnée précédemment dans le cadre de l’algorithme Metropolis-Hastings sur un espace étendu. L’objectif de ce travail est, en premier lieu, de présenter les méthodes MCCM, et par la suite d’étudier et d’analyser les algorithmes Metropolis-Hastings ainsi que le MTM standard afin de permettre aux lecteurs une meilleure compréhension de l’implémentation de ces méthodes. Un deuxième objectif est d’étudier les perspectives ainsi que les inconvénients de l’algorithme MTM revisité afin de voir s’il répond aux attentes de la communauté statistique. Enfin, nous tentons de combattre le problème dedentarité de l’algorithme MTM revisité, ce qui donne lieu à un tout nouvel algorithme. Ce nouvel algorithme performe bien lorsque le nombre de candidats générés à chaque itérations est petit, mais sa performance se dégrade à mesure que ce nombre de candidats croît.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.