962 resultados para Cfd


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis develops and tests various transient and steady-state computational models such as direct numerical simulation (DNS), large eddy simulation (LES), filtered unsteady Reynolds-averaged Navier-Stokes (URANS) and steady Reynolds-averaged Navier-Stokes (RANS) with and without magnetic field to investigate turbulent flows in canonical as well as in the nozzle and mold geometries of the continuous casting process. The direct numerical simulations are first performed in channel, square and 2:1 aspect rectangular ducts to investigate the effect of magnetic field on turbulent flows. The rectangular duct is a more practical geometry for continuous casting nozzle and mold and has the option of applying magnetic field either perpendicular to broader side or shorter side. This work forms the part of a graphic processing unit (GPU) based CFD code (CU-FLOW) development for magnetohydrodynamic (MHD) turbulent flows. The DNS results revealed interesting effects of the magnetic field and its orientation on primary, secondary flows (instantaneous and mean), Reynolds stresses, turbulent kinetic energy (TKE) budgets, momentum budgets and frictional losses, besides providing DNS database for two-wall bounded square and rectangular duct MHD turbulent flows. Further, the low- and high-Reynolds number RANS models (k-ε and Reynolds stress models) are developed and tested with DNS databases for channel and square duct flows with and without magnetic field. The MHD sink terms in k- and ε-equations are implemented as proposed by Kenjereš and Hanjalić using a user defined function (UDF) in FLUENT. This work revealed varying accuracies of different RANS models at different levels. This work is useful for industry to understand the accuracies of these models, including continuous casting. After realizing the accuracy and computational cost of RANS models, the steady-state k-ε model is then combined with the particle image velocimetry (PIV) and impeller probe velocity measurements in a 1/3rd scale water model to study the flow quality coming out of the well- and mountain-bottom nozzles and the effect of stopper-rod misalignment on fluid flow. The mountain-bottom nozzle was found more prone to the longtime asymmetries and higher surface velocities. The left misalignment of stopper gave higher surface velocity on the right leading to significantly large number of vortices forming behind the nozzle on the left. Later, the transient and steady-state models such as LES, filtered URANS and steady RANS models are combined with ultrasonic Doppler velocimetry (UDV) measurements in a GaInSn model of typical continuous casting process. LES-CU-LOW is the fastest and the most accurate model owing to much finer mesh and a smaller timestep. This work provided a good understanding on the performance of these models. The behavior of instantaneous flows, Reynolds stresses and proper orthogonal decomposition (POD) analysis quantified the nozzle bottom swirl and its importance on the turbulent flow in the mold. Afterwards, the aforementioned work in GaInSn model is extended with electromagnetic braking (EMBr) to help optimize a ruler-type brake and its location for the continuous casting process. The magnetic field suppressed turbulence and promoted vortical structures with their axis aligned with the magnetic field suggesting tendency towards 2-d turbulence. The stronger magnetic field at the nozzle well and around the jet region created large scale and lower frequency flow behavior by suppressing nozzle bottom swirl and its front-back alternation. Based on this work, it is advised to avoid stronger magnetic field around jet and nozzle bottom to get more stable and less defect prone flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Common building energy modeling approaches do not account for the influence of surrounding neighborhood on the energy consumption patterns. This thesis develops a framework to quantify the neighborhood impact on a building energy consumption based on the local wind flow. The airflow in the neighborhood is predicted using Computational Fluid Dynamics (CFD) in eight principal wind directions. The developed framework in this study benefits from wind multipliers to adjust the wind velocity encountering the target building. The input weather data transfers the adjusted wind velocities to the building energy model. In a case study, the CFD method is validated by comparing with on-site temperature measurements, and the building energy model is calibrated using utilities data. A comparison between using the adjusted and original weather data shows that the building energy consumption and air system heat gain decreased by 5% and 37%, respectively, while the cooling gain increased by 4% annually.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho tem como objetivo desenvolver uma metodologia de seletividade cinética, para os pseudocomponentes do petróleo em escoamento gás-liquido em colunas de bolhas usando a Fluidodinâmica Computacional (CFD). Uma geometria cilíndrica de 2,5m de altura e 0,162m de diâmetro foi usada tanto na validação fluidodinâmica com base em dados experimentais da literatura, como na análise cinética do reator operando em dois modos distintos em relação a fase líquida: batelada e contínuo. Todos os casos de estudo operam em regime heterogêneo de escoamento, com velocidade superficial do gás igual a 8 cm/s e diâmetro médio de bolhas de 6 mm. O modelo fluidodinâmico validado apresentou boa concordância com os dados experimentais, sendo empregado como base para a implementação do modelo cinético de rede de Krishna e Saxena (1989). A análise da hidroconversão foi realizada a 371ºC, e os resultados mostraram o comportamento esperado para o processo reativo estudado, definindo-se os tempos (batelada) e posições axiais (contínuo) de coleta ideal para os pseudocomponentes leves. Em síntese, ressaltase o uso da ferramenta CFD no entendimento, desenvolvimento e otimização de processos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis work deals with a mathematical description of flow in polymeric pipe and in a specific peristaltic pump. This study involves fluid-structure interaction analysis in presence of complex-turbulent flows treated in an arbitrary Lagrangian-Eulerian (ALE) framework. The flow simulations are performed in COMSOL 4.4, as 2D axial symmetric model, and ABAQUS 6.14.1, as 3D model with symmetric boundary conditions. In COMSOL, the fluid and structure problems are coupled by monolithic algorithm, while ABAQUS code links ABAQUS CFD and ABAQUS Standard solvers with single block-iterative partitioned algorithm. For the turbulent features of the flow, the fluid model in both codes is described by RNG k-ϵ. The structural model is described, on the basis of the pipe material, by Elastic models or Hyperelastic Neo-Hookean models with Rayleigh damping properties. In order to describe the pulsatile fluid flow after the pumping process, the available data are often defective for the fluid problem. Engineering measurements are normally able to provide average pressure or velocity at a cross-section. This problem has been analyzed by McDonald's and Womersley's work for average pressure at fixed cross section by Fourier analysis since '50, while nowadays sophisticated techniques including Finite Elements and Finite Volumes exist to study the flow. Finally, we set up peristaltic pipe simulations in ABAQUS code, by using the same model previously tested for the fl uid and the structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis is to test the ability of some correlative models such as Alpert correlations on 1972 and re-examined on 2011, the investigation of Heskestad and Delichatsios in 1978, the correlations produced by Cooper in 1982, to define both dynamic and thermal characteristics of a fire induced ceiling-jet flow. The flow occurs when the fire plume impinges the ceiling and develops in the radial direction of the fire axis. Both temperature and velocity predictions are decisive for sprinklers positioning, fire alarms positions, detectors (heat, smoke) positions and activation times and back-layering predictions. These correlative models will be compared with a 3D numerical simulation software CFAST. For the results comparison of temperature and velocity near the ceiling. These results are also compared with a Computational Fluid Dynamics (CFD) analysis, using ANSYS FLUENT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The constant need to improve helicopter performance requires the optimization of existing and future rotor designs. A crucial indicator of rotor capability is hover performance, which depends on the near-body flow as well as the structure and strength of the tip vortices formed at the trailing edge of the blades. Computational Fluid Dynamics (CFD) solvers must balance computational expenses with preservation of the flow, and to limit computational expenses the mesh is often coarsened in the outer regions of the computational domain. This can lead to degradation of the vortex structures which compose the rotor wake. The current work conducts three-dimensional simulations using OVERTURNS, a three-dimensional structured grid solver that models the flow field using the Reynolds-Averaged Navier-Stokes equations. The S-76 rotor in hover was chosen as the test case for evaluating the OVERTURNS solver, focusing on methods to better preserve the rotor wake. Using the hover condition, various computational domains, spatial schemes, and boundary conditions were tested. Furthermore, a mesh adaption routine was implemented, allowing for the increased refinement of the mesh in areas of turbulent flow without the need to add points to the mesh. The adapted mesh was employed to conduct a sweep of collective pitch angles, comparing the resolved wake and integrated forces to existing computational and experimental results. The integrated thrust values saw very close agreement across all tested pitch angles, while the power was slightly over predicted, resulting in under prediction of the Figure of Merit. Meanwhile, the tip vortices have been preserved for multiple blade passages, indicating an improvement in vortex preservation when compared with previous work. Finally, further results from a single collective pitch case were presented to provide a more complete picture of the solver results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] Therefore the understanding and proper evaluation of the flow and mixing behaviour at microscale becomes a very important issue. In this study, the diffusion behaviour of two reacting solutions of HCI and NaOH were directly observed in a glass/polydimethylsiloxane microfluidic device using adaptive coatings based on the conductive polymer polyaniline that are covalently attached to the microchannel walls. The two liquid streams were combined at the junction of a Y-shaped microchannel, and allowed to diffuse into each other and react. The results showed excellent correlation between optical observation of the diffusion process and the numerical results. A numerical model which is based on finite volume method (FVM) discretisation of steady Navier-Stokes (fluid flow) equations and mass transport equations without reactions was used to calculate the flow variables at discrete points in the finite volume mesh element. The high correlation between theory and practical data indicates the potential of such coatings to monitor diffusion processes and mixing behaviour inside microfluidic channels in a dye free environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore the recently developed snapshot-based dynamic mode decomposition (DMD) technique, a matrix-free Arnoldi type method, to predict 3D linear global flow instabilities. We apply the DMD technique to flows confined in an L-shaped cavity and compare the resulting modes to their counterparts issued from classic, matrix forming, linear instability analysis (i.e. BiGlobal approach) and direct numerical simulations. Results show that the DMD technique, which uses snapshots generated by a 3D non-linear incompressible discontinuous Galerkin Navier?Stokes solver, provides very similar results to classical linear instability analysis techniques. In addition, we compare DMD results issued from non-linear and linearised Navier?Stokes solvers, showing that linearisation is not necessary (i.e. base flow not required) to obtain linear modes, as long as the analysis is restricted to the exponential growth regime, that is, flow regime governed by the linearised Navier?Stokes equations, and showing the potential of this type of analysis based on snapshots to general purpose CFD codes, without need of modifications. Finally, this work shows that the DMD technique can provide three-dimensional direct and adjoint modes through snapshots provided by the linearised and adjoint linearised Navier?Stokes equations advanced in time. Subsequently, these modes are used to provide structural sensitivity maps and sensitivity to base flow modification information for 3D flows and complex geometries, at an affordable computational cost. The information provided by the sensitivity study is used to modify the L-shaped geometry and control the most unstable 3D mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work analyses a study on natural ventilation and its relation to the urban legislation versus the building types in an urban fraction of coastal area of Praia do Meio in the city of Natal/RN, approaching the type or types of land use most appropriate to this limited urban fraction. The objective of this study is to analyse the effects of the present legislation as well as the types of buildings in this area on the natural ventilation. This urban fraction was selected because it is one of the sites from where the wind flows into the city of Natal. This research is based on the hypothesis stating that the reduction on the porosity of the urban soil (decrease in the set back/boundary clearance), and an increase in the form (height of the buildings) rise the level of the ventilation gradient, consequently causing a reduction on the wind speed at the lowest part of the buildings. Three-dimensional computational models were used to produce the modes of occupation allowed in the urban fraction within the area under study. A Computational Fluid Dynamics (CFD) software was also used to analyse the modes of land occupation. Following simulation, a statistical assessment was carried out for validation of the hypothesis. It was concluded that the reduction in the soil porosity as a consequence of the rates that defined the minimum boundary clearance between the building and the boundary of the plot (and consequently the set back), as well as the increase in the building form (height of the buildings) caused a reduction in the wind speed, thus creating heat islands

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis aims to describe and demonstrate the developed concept to facilitate the use of thermal simulation tools during the building design process. Despite the impact of architectural elements on the performance of buildings, some influential decisions are frequently based solely on qualitative information. Even though such design support is adequate for most decisions, the designer will eventually have doubts concerning the performance of some design decisions. These situations will require some kind of additional knowledge to be properly approached. The concept of designerly ways of simulating focuses on the formulation and solution of design dilemmas, which are doubts about the design that cannot be fully understood nor solved without using quantitative information. The concept intends to combine the power of analysis from computer simulation tools with the capacity of synthesis from architects. Three types of simulation tools are considered: solar analysis, thermal/energy simulation and CFD. Design dilemmas are formulated and framed according to the architect s reflection process about performance aspects. Throughout the thesis, the problem is investigated in three fields: professional, technical and theoretical fields. This approach on distinct parts of the problem aimed to i) characterize different professional categories with regards to their design practice and use of tools, ii) investigate preceding researchers on the use of simulation tools and iii) draw analogies between the proposed concept, and some concepts developed or described in previous works about design theory. The proposed concept was tested in eight design dilemmas extracted from three case studies in the Netherlands. The three investigated processes are houses designed by Dutch architectural firms. Relevant information and criteria from each case study were obtained through interviews and conversations with the involved architects. The practical application, despite its success in the research context, allowed the identification of some applicability limitations of the concept, concerning the architects need to have technical knowledge and the actual evolution stage of simulation tools

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural ventilation is an efficient bioclimatic strategy, one that provides thermal comfort, healthful and cooling to the edification. However, the disregard for quality environment, the uncertainties involved in the phenomenon and the popularization of artificial climate systems are held as an excuse for those who neglect the benefits of passive cooling. The unfamiliarity with the concept may be lessened if ventilation is observed in every step of the project, especially in the initial phase in which decisions bear a great impact in the construction process. The tools available in order to quantify the impact of projected decisions consist basically of the renovation rate calculations or computer simulations of fluids, commonly dubbed CFD, which stands for Computational Fluid Dynamics , both somewhat apart from the project s execution and unable to adapt for use in parametric studies. Thus, we chose to verify, through computer simulation, the representativeness of the results with a method of simplified air reconditioning rate calculation, as well as making it more compatible with the questions relevant to the first phases of the project s process. The case object consists of a model resulting from the recommendations of the Código de Obras de Natal/ RN, customized according to the NBR 15220. The study has shown the complexity in aggregating a CFD tool to the process and the need for a method capable of generating data at the compatible rate to the flow of ideas and are discarded during the project s development. At the end of our study, we discuss the necessary concessions for the realization of simulations, the applicability and the limitations of both the tools used and the method adopted, as well as the representativeness of the results obtained

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The building envelope is the principal mean of interaction between indoors and environment, with direct influence on thermal and energy performance of the building. By intervening in the envelope, with the proposal of specific architectural elements, it is possible to promote the use of passive strategies of conditioning, such as natural ventilation. The cross ventilation is recommended by the NBR 15220-3 as the bioclimatic main strategy for the hot and humid climate of Natal/RN, offering among other benefits, the thermal comfort of occupants. The analysis tools of natural ventilation, on the other hand, cover a variety of techniques, from the simplified calculation methods to computer fluid dynamics, whose limitations are discussed in several papers, but without detailing the problems encountered. In this sense, the present study aims to evaluate the potential of wind catchers, envelope elements used to increase natural ventilation in the building, through CFD simplified simulation. Moreover, it seeks to quantify the limitations encountered during the analysis. For this, the procedure adopted to evaluate the elements implementation and efficiency was the CFD simulation, abbreviation for Computer Fluid Dynamics, with the software DesignBuilder CFD. It was defined a base case, where wind catchers were added with various settings, to compare them with each other and appreciate the differences in flows and air speeds encountered. Initially there has been done sensitivity tests for familiarization with the software and observe simulation patterns, mapping the settings used and simulation time for each case simulated. The results show the limitations encountered during the simulation process, as well as an overview of the efficiency and potential of wind catchers, with the increase of ventilation with the use of catchers, differences in air flow patterns and significant increase in air speeds indoors, besides changes found due to different element geometries. It is considered that the software used can help designers during preliminary analysis in the early stages of design

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research covers the topic of social housing and its relation to thermal comfort, so applied to an architectural and urban intervention in land situated in central urban area of Macaíba/RN, Brazil. Reflecting on the role of design and use of alternative building materials in the search for better performance is one of its main goals. The hypothesis is that by changing design parameters and choice of materials, it is possible to achieve better thermal performance results. Thus, we performed computer simulations of thermal performance and natural ventilation using computational fluid dynamics or CFD (Computational Fluid Dynamics). The presentation of the thermal simulation followed the methodology proposed in the dissertation Negreiros (2010), which aims to find the percentage of the amount of hours of comfort obtained throughout the year, while data analysis was made of natural ventilation from images generated by the images extracted from the CFD. From model building designed, was fitted an analytical framework that results in a comparison between three different proposals for dwellings housing model, which is evaluated the question of the thermal performance of buildings, and also deals with the spatial variables design, construction materials and costs. It is concluded that the final report confirmed the general hypotheses set at the start of the study, it was possible to quantify the results and identify the importance of design and construction materials are equivalent, and that, if combined, lead to gains in thermal performance potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research and development of wind turbine blades are essential to keep pace with worldwide growth in the renewable energy sector. Although currently blades are typically produced using glass fiber reinforced composite materials, the tendency for larger size blades, particularly for offshore applications, has increased the interest on carbon fiber reinforced composites because of the potential for increased stiffness and weight reduction. In this study a model of blade designed for large generators (5 MW) was studied on a small scale. A numerical simulation was performed to determine the aerodynamic loading using a Computational Fluid Dynamics (CFD) software. Two blades were then designed and manufactured using epoxy matrix composites: one reinforced with glass fibers and the other with carbon fibers. For the structural calculations, maximum stress failure criterion was adopted. The blades were manufactured by Vacuum Assisted Resin Transfer Molding (VARTM), typical for this type of component. A weight comparison of the two blades was performed and the weight of the carbon fiber blade was approximately 45% of the weight of the fiberglass reinforced blade. Static bending tests were carried out on the blades for various percentages of the design load and deflections measurements were compared with the values obtained from finite element simulations. A good agreement was observed between the measured and calculated deflections. In summary, the results of this study confirm that the low density combined with high mechanical properties of carbon fibers are particularly attractive for the production of large size wind turbine blades

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work studies the natural ventilation and its relationship with the urban standards, which establishes the form of occupation and use of the land in our cities. The method simulates the application of the urban standards of the City Master Plan over the last three years. The simulation takes place in the District of Petrópolis, in the city of Natal , Brazil and analyses the effects of the standards of natural ventilation. The formulated hypothesis states that the reductions in the urban spaces between buildings rises up the vertical profile of ventilation, reducing, therefore, the velocity of the wind at the lower levels of the buildings. To develop the study, occupation models were built, using computerized, three-dimensional models. These occupation models were analyzed using the CFD (Computational Fluid Dynamics) code. The conclusion is that the more we reduce the urban space between buildings, the more we reduce the wind speed in constructed areas, increasing, therefore, the possibility to generate heat islands